

### Vaccination against HPAI

#### **Prof Ian Brown**

Head of Virology

Director of EU/WOAH/FAO International Reference Laboratory for Avian Influenza, Newcastle Disease and Swine Influenza Animal and Plant Health Agency-Weybridge OFFLU chair

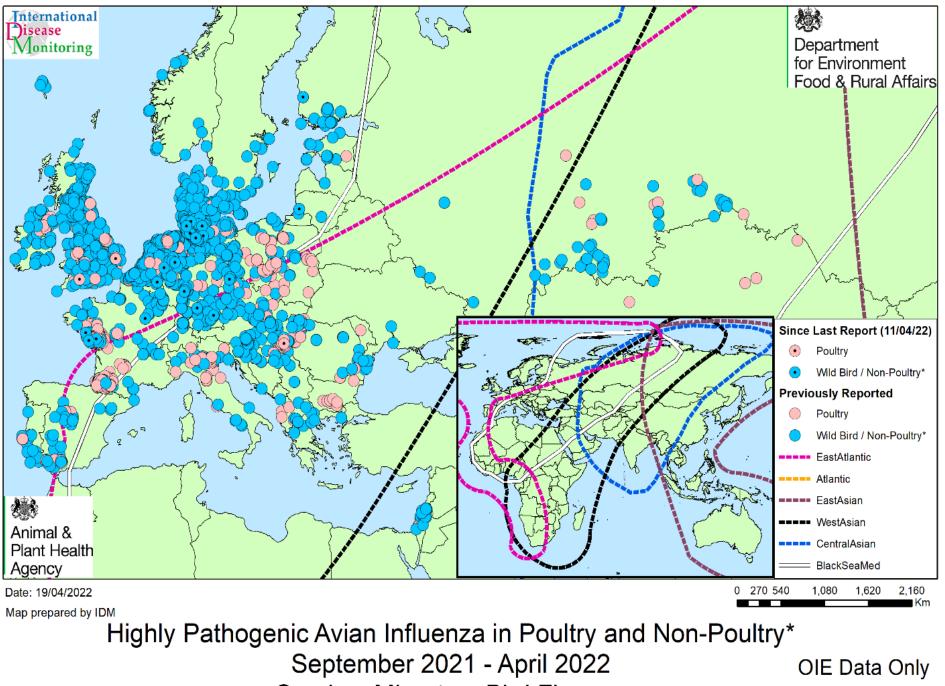
30th WOAH Conference of the Regional Commission for Europe, Catania, Sicily, Italy 3-7 October 2022 Technical Item II: 5th October 2022

### **Technical item II objectives**

- Set a framework of questions to make science based decisions regarding vaccination policy against infection with HPAI viruses is Europe
- To organise the mechanism which would support WOAH and Members in addressing these questions

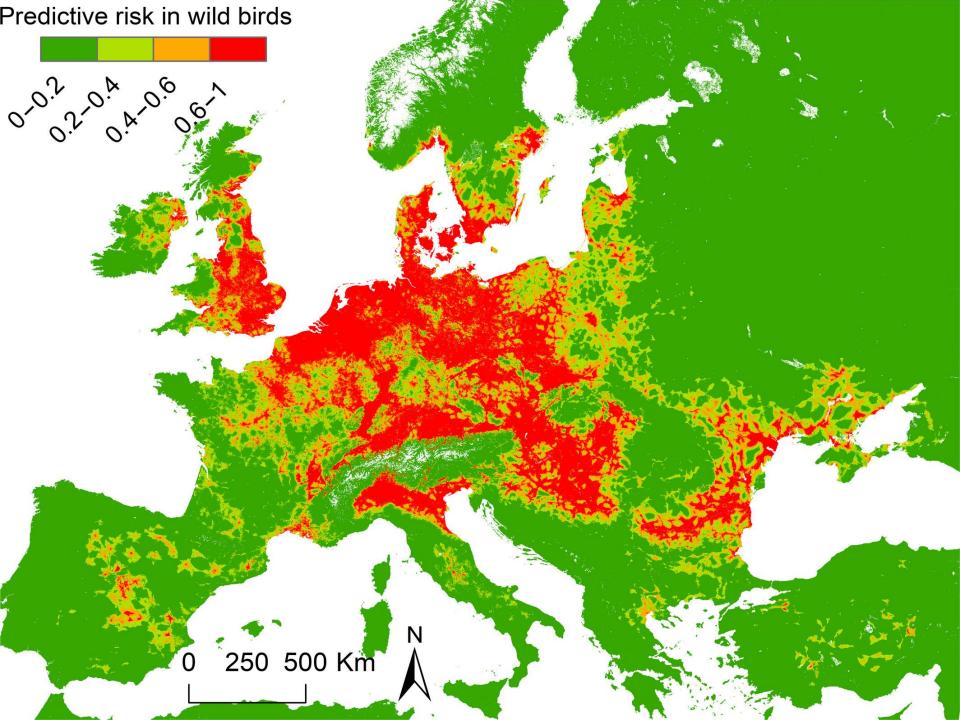
# To vaccinate or not??

- What has changed?
- Are current control approaches sustainable?
- Future risk and possible need for vaccination
  - Benefits/cons
  - Dispelling myths
- First principles of vaccination; focus Al
- Barriers
- Practical considerations
- Activity in the region to prepare/develop contingency

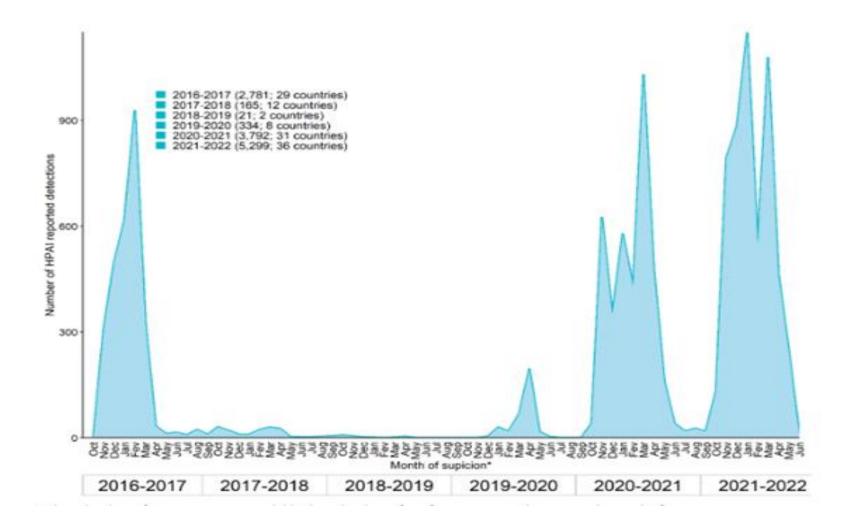

#### Ai Geoghrapical distribution

H3N8 LPAI Human
 H5 HPAI Bird/Environment
 H5 LPAI Bird/Environment
 H5N1 HPAI Bird/Environment
 H5N2 HPAI Bird/Environment
 H5N3 HPAI Bird/Environment
 H5N5 HPAI Bird/Environment
 H5N6 HPAI Bird/Environment
 H5N8 HPAI Bird/Environment
 A7 LPAI Bird/Environment
 H7N3 HPAI Bird/Environment
 H7N3 HPAI Bird/Environment

# H9N2 LPAI Human


01 October 2021 - 28 September 2022





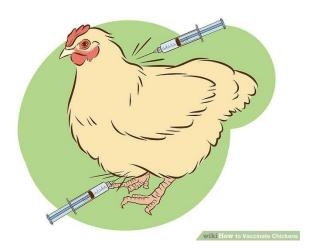

**Overlay: Migratory Bird Flyways** 

\*OIE Defined



#### European HPAI epidemic waves 2016-2022




Animal & Plant Health Agency

#### Epidemiology of H5 HPAI epizootics with 'clade 2.3.4.4b' viruses

- Primary incursions wild bird mediated
  - Large epizootics
- Secondary spread between poultry premises
- Lethal outcomes high mortality
  - Some attenuation in disease in adult domestic ducks/geese
- Large virus diversity both at serotype and genetic level
  - H5N1 dominant late 2021; New incursions from east
- Range of measures to control in WOAH Europe region
  - Stamping out, control zones, housing orders, <u>vaccination prohibited in</u> <u>many countries</u>

#### Desired results of vaccination against AI

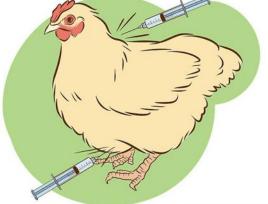
- freedom from disease
- no effect on production or other serious expense
- no trade embargoes
- Eradication if enzootic infection



#### Criteria for vaccine suitability

Swayne and Sims (2020) proposed 8 criteria

- Inexpensive
- usable in multiple avian species
- provide protection after a single dose
- can be applied by low-cost mass application methods
- allow easy identification of infected birds within the vaccinated population
- produce a protective humoral response in the presence of maternal antibodies
- be applied at one day of age in hatchery or *in ovo*;
- antigenically close to field virus.


No current vaccine or vaccine technology meets all eight criteria so the user must select the licensed vaccine that best meets their needs.

Swayne D.E. & Sims L. (2020). Avian influenza. In: Veterinary Vaccines: Principles and Applications, Metwally S, 10 El Idrissi M., Viljoen G., eds. Wiley, Chichester, United Kingdom, 229–251

### Avian influenza vaccination

Current vaccines can result in:

- Protection against clinical signs
- Decrease bird susceptibility to infection
- Reduction in virus excretion
- Reduction in transmission (birds and humans)
  BUT.....



# Al vaccination - caution

- Al virus may infect and replicate in vaccinated birds without clinical signs
- As a corollary HPAI as defined by OIE may still be confirmed in such birds
- Coverage rates in key at risk populations need to be >60% (ideally 80%)
- Infection with HPAI virus without clinical signs may lead to spread and an endemic situation





## Vaccination will only work when applied in combination with other measures

Vaccination is not a substitute for weak farm biosecurity

#### Challenges associated with use of vaccination

- Clearly defined objectives/Exit strategy
- Supplementary tool for control of outbreaks
  - Biosecurity
  - Stamping out of infected flocks
  - Buffer zones
- Proactive surveillance necessary in vaccinated populations
  - DIVA
  - Serological monitoring
  - Use of sentinels
- Antigenic variability in field strains
- Target populations?
- Ease of delivery
- System for control of statutory disease needs to be subject to supervision by competent veterinary authority
- Trade impacts
- Management of public health implications/assurance
- Experiences of last scale vaccination for control of HPAI limited





Veterinary inactivated vaccines for AI (advantages and disadvantages)

- Inactivated whole AI virus with adjuvant; produced versus field strain (ie rg viruses in China versus evolving H5)
  - Relatively cheap, multiple hosts, easy to standardise, can be adapted to field virus, licensure
  - Generally 2 doses for protection; NO mass application, lack DIVA, poor in overcoming maternal antibody, or hatchery application





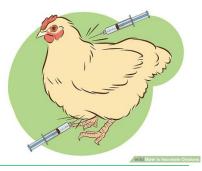
Text in footer

Veterinary vectored vaccines for AI (advantages and disadvantages)

- Live vector avian virus carrying an AI gene insert ie H5 HA
  - Number of delivery vectors (Avian Paramyxovirus type 1, DVE, Fowlpox, Herpesvirus Turkey
  - Relatively cheap, easy to standardise, can be adapted to field virus, mass application including at hatchery, DIVA applicable
  - Host specificity (define target population), licensure for field, natural immunity in population to vector







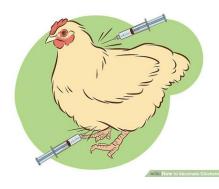

Text in footer

#### Veterinary sub-unit or nucleic acid vaccines for AI (advantages and disadvantages)

- In vitro produced HA
  - Adaptable to changing virus, DIVA, multiple hosts
  - Poor knowledge for field application, expensive to produce, delivery?
- Nucleic acid
  - Adaptable to changing virus, DIVA, multiple hosts
  - Poor knowledge for field application, expensive to produce, delivery?, 2 doses minimum






Text in footer

#### Vaccination as a tool for prevention/control

- 420 billion doses (since 2002)
  - >99% in 4 countries; China (91%), Egypt (4.65%), Indonesia (2.3%) & Vietnam (1.43%)
  - Ten countries or regions 0.7% of total (high risk targeting or management tool during eradication)
  - Newly vaccinating Iran, Kazakhstan and Bangladesh
- Inactivated (90%) and live recombinant vectored vaccines (<10%)</li>
- Challenges to induce sufficient flock immunity in susceptible key species
- Variable outcomes

#### China: best experience of H5 HPAI vaccination?

- Vaccinating since approximately 2000
- Reduced disease/infection burden
- Applied to all commercial poultry but live bird markets?
- Formal system for review of vaccine strain v circulating field strains
- H5 HPAI goose/Guangdong lineage viruses have evolved continuously
- 14 updates to vaccine to match against the changing virus
- Complicated by co-circulation of multiple sub families
  - Cross protection not assured
  - More than one strain included in vaccine
- Emergence of 'fit' virus variants
  - Public health risk
  - Clade 2.3.4.4b H5N6 increased human cases 2021/22



# WOAH Animal Health Code: 2022 adopted updated AI chapter

<u>"Vaccination</u> will not affect the high pathogenicity avian influenza status of a free country or <u>zone</u> if <u>surveillance</u> supports the absence of <u>infection</u>, in accordance with Article <u>10.4.28.</u>,... "

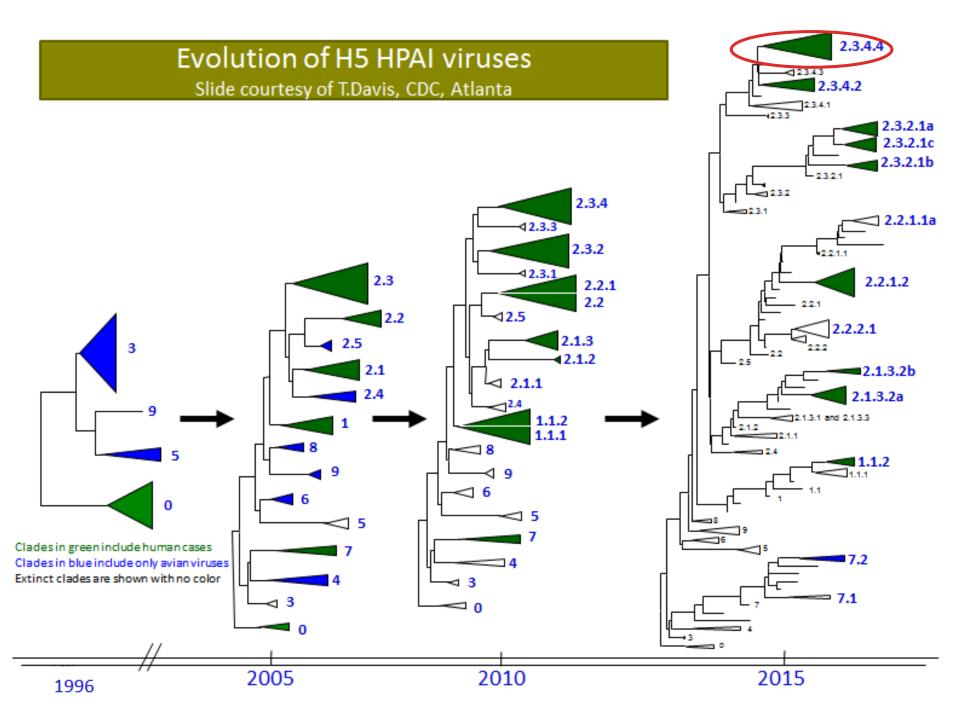
<u>"Vaccination</u> can be used as an effective complementary control tool when a <u>stamping-out policy</u> alone is not sufficient. Whether to vaccinate or not should be decided by the <u>Veterinary Authority</u> on the basis of the avian influenza situation as well as the ability of the <u>Veterinary Services</u> to implement the <u>vaccination</u> strategy,..."

Requirements to do surveillance in vaccinated populations, zones or compartments to provide evidence of absence of infection

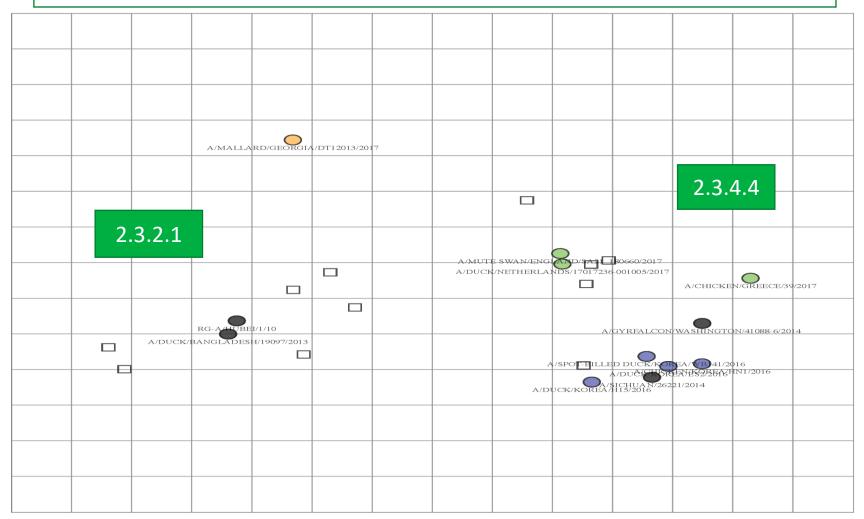


#### Surveillance in vaccinated birds- WOAH guidance

- In all vaccinated <u>flocks</u> tests should be performed to ensure the absence of virus circulation. The tests should be repeated at a frequency that is proportionate to the <u>risk</u> in the country, <u>zone</u> or <u>compartment</u>. The use of sentinel <u>poultry</u> may provide further confidence in the absence of virus circulation.
- Member Countries seeking the demonstration of freedom from high pathogenicity avian influenza in vaccinated population should refer to the chapter on avian influenza (*infection* with avian influenza viruses) in the *Terrestrial Manual*.
- Evidence to show the effectiveness of the <u>vaccination</u> programme should also be provided.




# Framework considerations for harmonised use of vaccination against HPAI in the Europe region


- Continual risk with epizootic waves
- Programme scope and integration in overarching disease control and threat mitigation
  - Targeted/non targeted; preventative or emergency; species; geography inc DPPA
- Programme duration
- Vaccine type
- Surveillance requirements including DIVA approach
- Safeguards for movements of birds and products
- Trade impacts (as applicable)

# Framework considerations for harmonised use of vaccination against HPAI in the Europe region

- System for continuous review of programme implementation and effectiveness including cost benefit analysis
- System for continuous assessment of vaccine effectiveness and need for updates
- Programme financing and legal framework (from vaccine market authorization to proper training in vaccination)
- Management of possible impacts for public health and social perception.
- Vaccination should be part of contingency planning even if not adopted



#### Mapping antigenic changes in H5 HPAI viruses

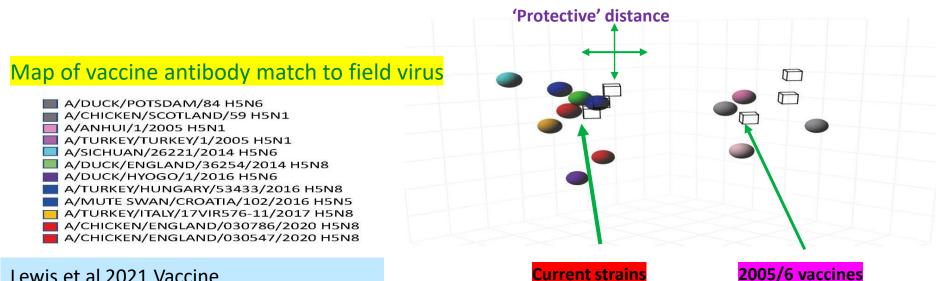


Antigenic map of H5 LPAI and HPAI viruses from HI assay data generated by APHA-UK Viruses are shown as colored circles, polyclonal ferret sera as grey squares

Reference viruses: grey

LPAI H5N2: orange

HPAI 2.3.4.4 H5N6 viruses in green (Europe) and blue (Republic of Korea)




One grid square represents 1 antigenic unit or a 2-fold difference in HI assay titer.

2002 (N Animal & Plant Health Agency

#### Vaccines must be antigenically matched to circulating strains for efficacy

- Antigenically matched vaccines to field strains
  - can prevent disease, reduce shedding of virus, but may not completely prevent transmission to naïve birds
- Poorly matched vaccines to field strains
  - Reduce disease signs, may partially reduce virus shedding but will not stop transmission between birds/flocks
  - Without active monitoring of vaccinated flocks may at worst enable silent spread ٠



Lewis et al 2021 Vaccine




#### Vaccine strain matching

- International scanning for new threats/changes in virus: ref labs
- Viruses from vaccinated birds rapidly characterised
  - Including any change in zoonotic risk profile
- Information fed into ongoing assessment of vaccine effectiveness
- OFFLU new system for defining match amongst vaccine strains to field virus
- Discontinued us of non protective vaccines
- New vaccine designs offer promise for broader protective effect

#### Potential application in a Europe setting?

- Challenges
  - Vaccine bank provision?
  - Ensure appropriate high quality vaccines
  - Efficacy versus changing virus
  - DIVA can be applied??
  - Licensure issues
  - Cost benefit?
- Consideration of wider impacts
  - Trade
  - Surveillance intensity/cost to prove freedom
  - Vaccine escape
  - Public health perception/threat



### What is happening in EU/Europe

- Increased pressure to consider vaccination
- Amendments to EU AHL proposed to allow preventative and emergency vaccination
- EU Delegated Act 2020/7144 governance of veterinary medicinal products for prevention and control of certain listed diseases, should be published in 2022; European regulatory framework that allows the use of vaccine solutions for prevention or control purposes.
- Consistency with WOAH Animal Health Code
- Assessment of the feasibility and cost-benefit aspects in MS
- EMA to review evaluation of vaccines for licensure



OFFLU applying a concept for global poultry vaccine matching

#### Key conclusions

- Continual and increased risk: panzootic with continual virus evolution
- Although many vaccines are used few have proven utility to prevent H5 HPAI infection at population level
- Lack ease of delivery and efficacy versus a diverse family of viruses
  - Prime/boost (vector followed by inactivated)
- Innovations in vaccine design have largely not been invested in for AI for different field applications
  - Universal vaccines?
- Target hosts: anseriformes present greatest challenge
- Differentiating Infected from Vaccinated Animals
  - Relevant for some areas/regions likely important for trade
- Produced in accord with international standards (WOAH)
- Surveillance needs to provide assurances including for trade
- System for timely tracking vaccine match to field virus
- Vaccine bank utility?

• Multiple stakeholder support under control of the Veterinary Authority APHA 2018 30



## Thank you for your attention https://science.vla.gov.uk/fluglobalnet/



#### Email: AIWRL@apha.gov.uk



