

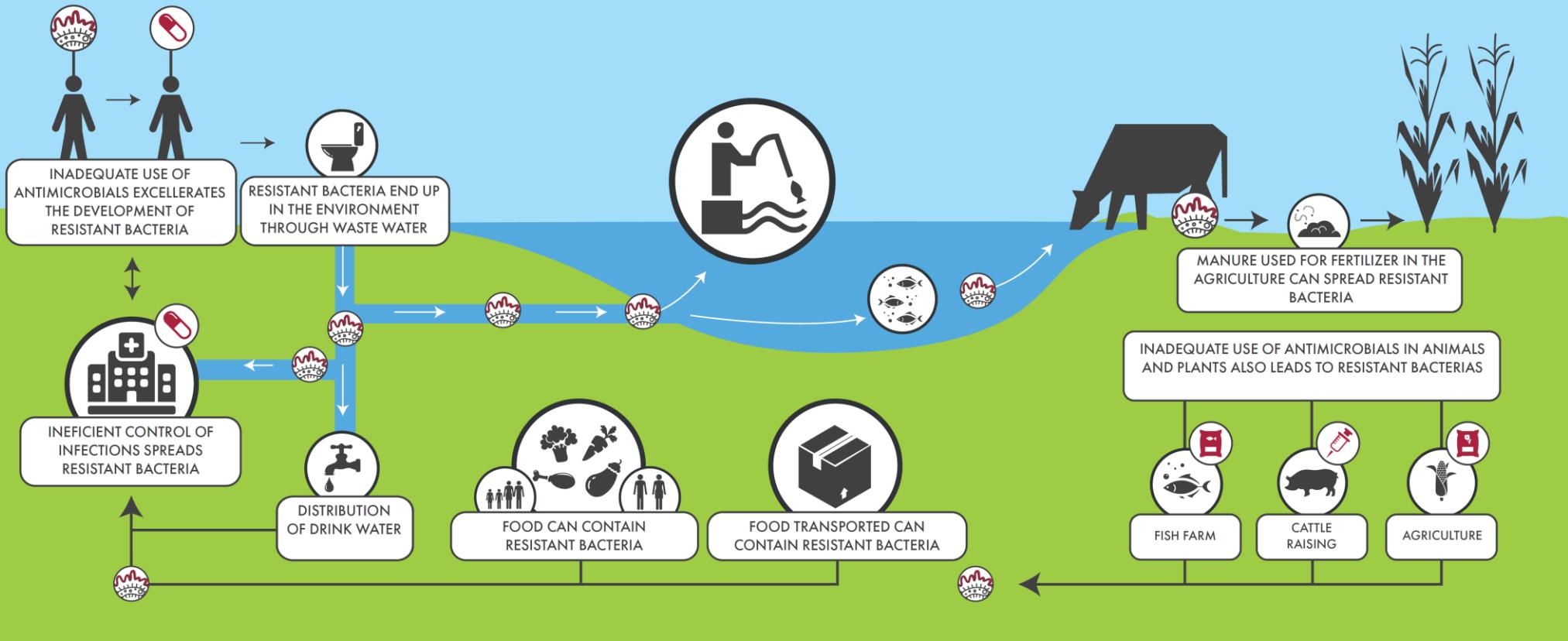
Tracking Antimicrobial Use in Animals: Building the Foundation for One Health Integrated Surveillance

Alice Aldora, DVM, MPhil

Antimicrobial Use Team
Antimicrobial Resistance and Veterinary Products Department
a.aldora@woah.org

20 November 2025

Accelerating the Operationalisation of the One Health Joint Plan of Action (OHJPA)
in Veterinary Services in the European Region
Athens, Greece



World
Organisation
for Animal
Health

Organisation
mondiale
de la santé
animale

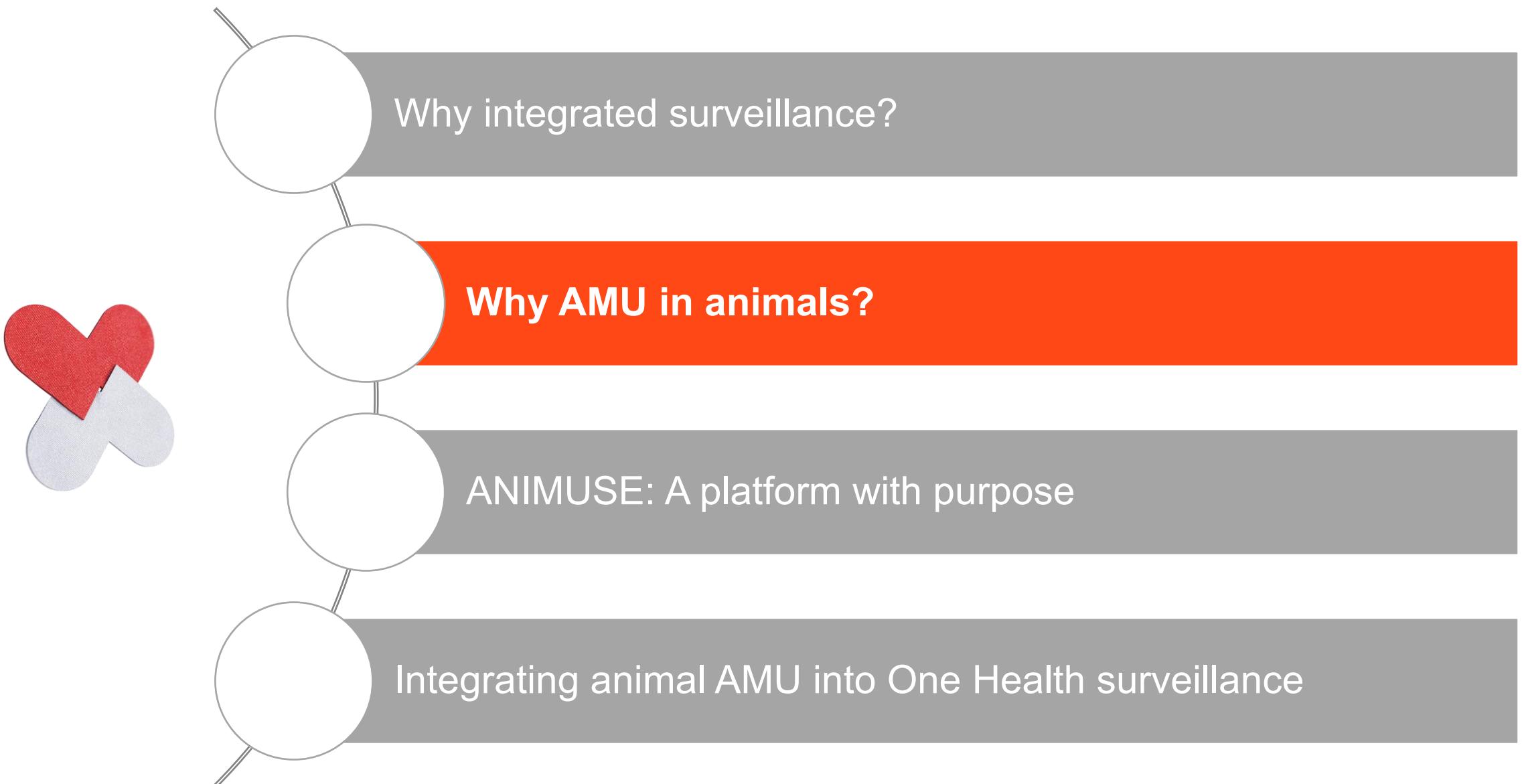
Organización
Mundial
de Sanidad
Animal

THE CYCLE OF RESISTANT BACTERIA

WORKING
TOGETHER
TO FIGHT
ANTIMICROBIAL
RESISTANCE

 Funded by the European Union

PAHO


Pan American Health Organization

World Health Organization

Region of the Americas

 Food and Agriculture Organization of the United Nations

 World Organisation for Animal Health

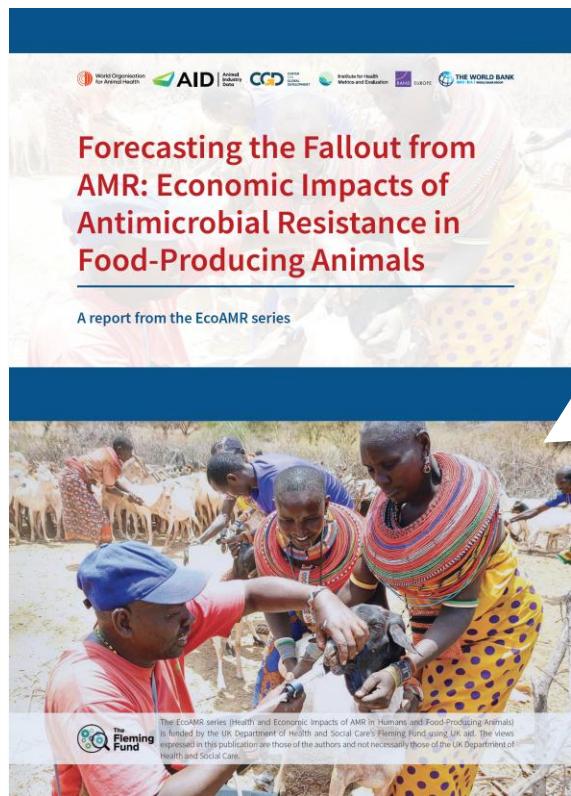
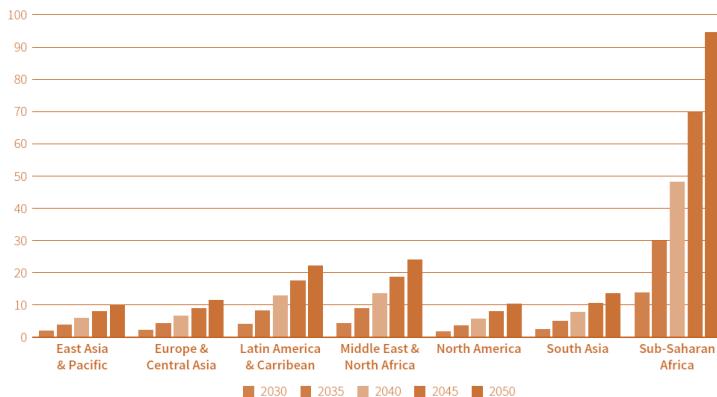
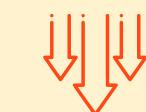



FIGURE 3 Predicted change in AMU by region 2025–2050 (per cent)


Note: entries report percentage change in AMU by year and region based on livestock production disease (LPD) model simulations for the reference scenario.

If no action is taken
reduce global GDP by **US\$ 40 billion** per year

The spread of resistant pathogens from
livestock to humans:
another **US\$ 77–384 billion** per year in GDP
(depending on the severity of the modelled spillover
and its impact on labour productivity)

**30% reduction of AMU within five years
raise GDP in 2050 by US\$ 14 billion**

Forecasting the Fallout from AMR: Averting the Health and Economic Impacts through One Health Policy and Investment

A policy brief from the EcoAMR series

BY 2050...

- If no action is taken, human health care costs due to antimicrobial resistance (AMR) could rise to **US\$ 159 billion** per year globally.

But investments in drug innovation and health care improvements can reduce these costs by **US\$ 97 billion** per year globally, boost the labour force by 23 million workers,¹ the rates of tourism by 1.2% and hospitality by 0.8%, adding **US\$ 960 billion** to the annual GDP, and generate a further **US\$ 679 billion** per year in health value, as measured by GDP per capita. It would cost US\$ 64 billion a year to roll out this policy, achieving a return on investment of 100%.

- If no action is taken, the impacts of AMR on livestock could reduce global GDP by **US\$ 40 billion** per year.

But achieving a global 30% reduction in animal antimicrobial use (AMU) within five years can raise GDP in 2050 by **US\$ 14 billion** in comparison to the business-as-usual forecast. Further reduction towards more optimal AMU levels within 20 years can raise GDP in 2050 by **US\$ 26 billion**.

The spread of resistant pathogens from humans to animals can cost up to **US\$ 77–384 billion** per year in GDP, depending on the severity of the modelled spillover and its impact on labour productivity.

- Without action, AMR in humans could cause **38.5 million deaths** between 2025 and 2050 – reaching a **60% annual toll** than today. People aged 70+ would suffer the most, with a 131% rise in deaths for this age group.

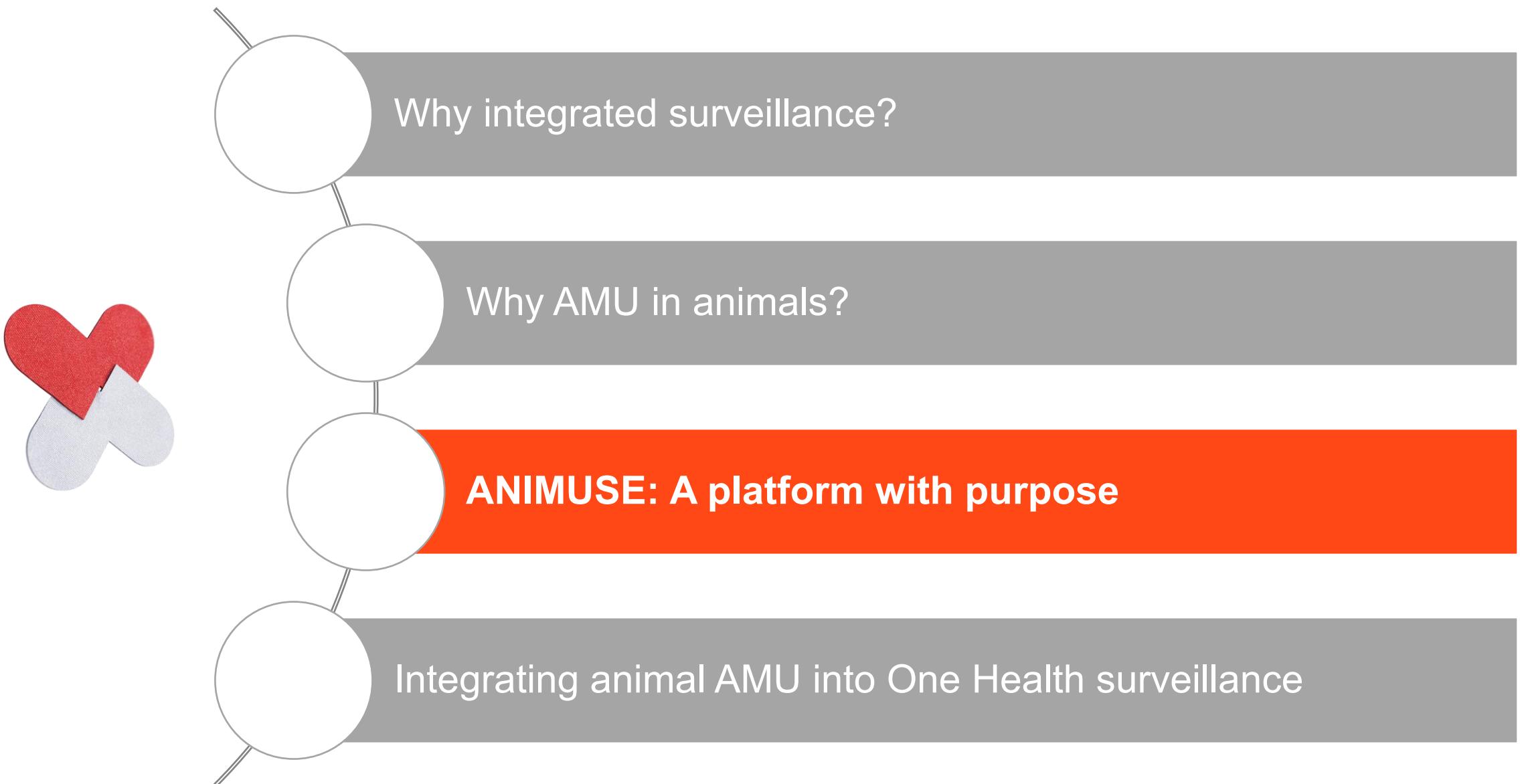
The human health burden would be heaviest in lower- and middle-income countries (LMICs) in **South Asia** (63,000 annual deaths), **Southeast Asia, East Asia and Oceania** (390,000), and **Sub-Saharan Africa** (120,000).

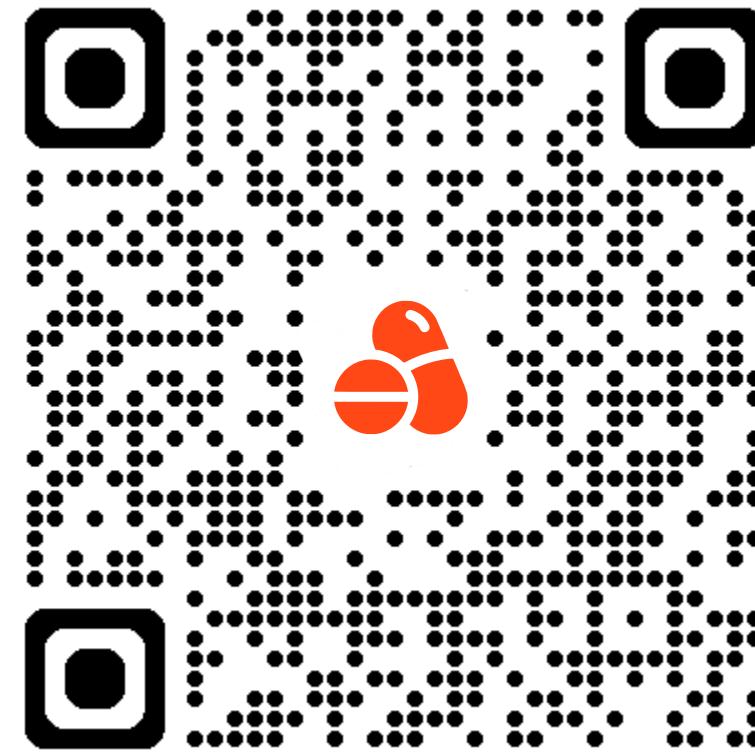
But development of new gram-negative antimicrobials with improved health care and vaccination as well as safe water, sanitation and hygiene (WASH) in LMICs can boost this impact to **save 110 million lives** from both AMR and non-AMR infections.

IN 2022 ALONE...

- A total of **1.15 million human deaths** were attributable to bacterial AMR.

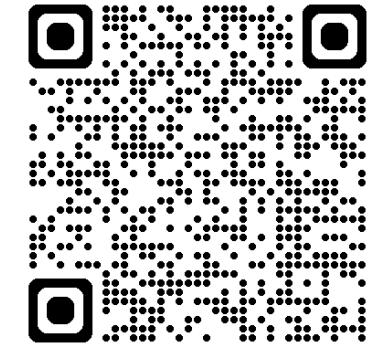
We need a One Health response and the evidence to guide it


To effectively respond, governments and international actors must know the potential implications and broader


impacts of AMR on economies and lives. That knowledge depends on multi-sectoral One Health evidence that reflects the connections between humans, animals and the environment, and that empowers principles of equity, equilibrity, and transdisciplinarity.

¹ This includes people who would otherwise leave the labour force due to illness or death. Without investment, additional people may leave to avoid heightened AMR risk (e.g. those with compromised immune systems).

The value of surveillance is in the **change it drives**,
not the database it fills.


<https://amu.woah.org/>

Purposes

Ch.6.9. Monitoring of the quantities and usage patterns of antimicrobial agents used in food-producing animals

Ch.6.3. Monitoring of the quantities and usage patterns of antimicrobial agents used in aquatic animals



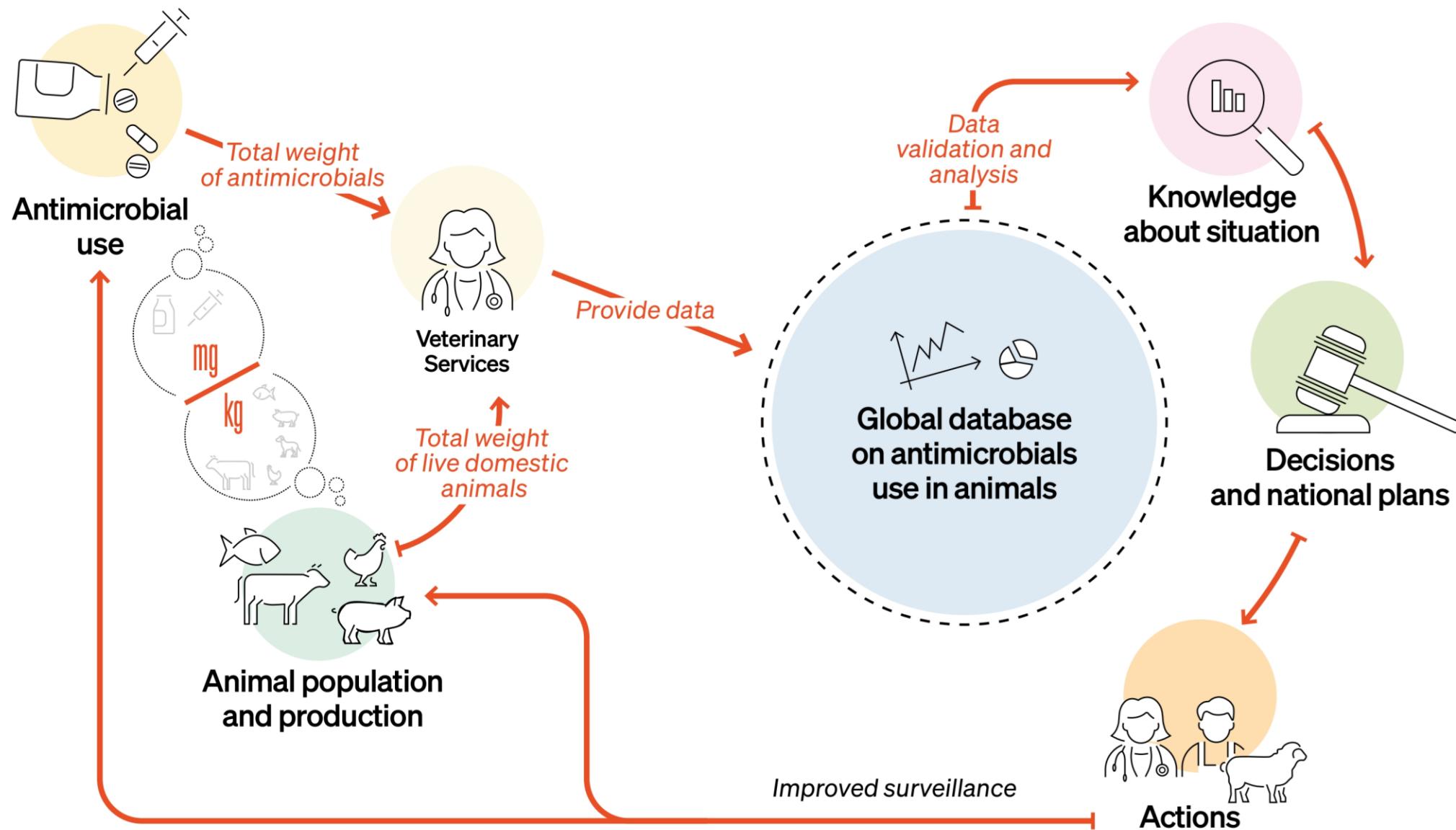
INTERPRETATION

Helping in the interpretation of AMR surveillance data and assisting in responding to problems of antimicrobial resistance in a precise and targeted way

EVOLUTION

Giving an indication of trends in the use of antimicrobial agents in animals over time and potential associations with AMR in animals

EVALUATION



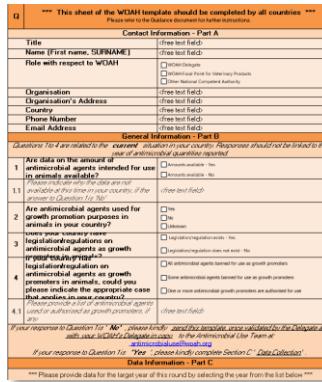
Assisting in risk management to evaluate the effectiveness of efforts and mitigation strategies.

COMMUNICATION

Ensuring transparency and communicating on the risks (if data published)

Data collection

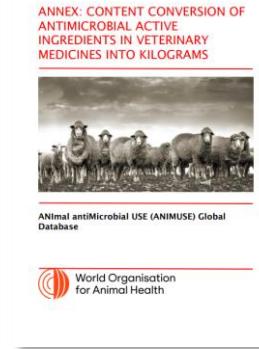
1 Directly input the data in ANIMUSE

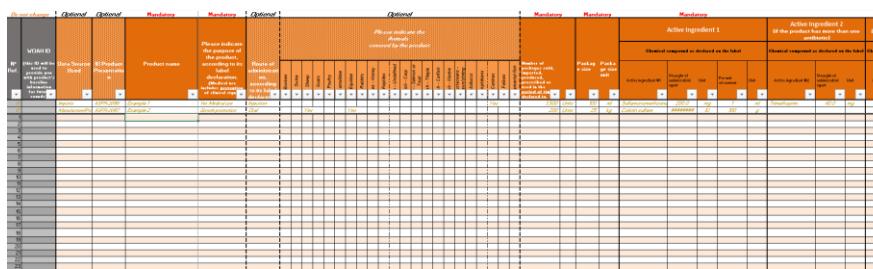

2 Send the Excel by email

Questionnaire

Qualitative
data

Quantitative
data


Optional:
Calculation
Module


Questionnaire
(Excel)

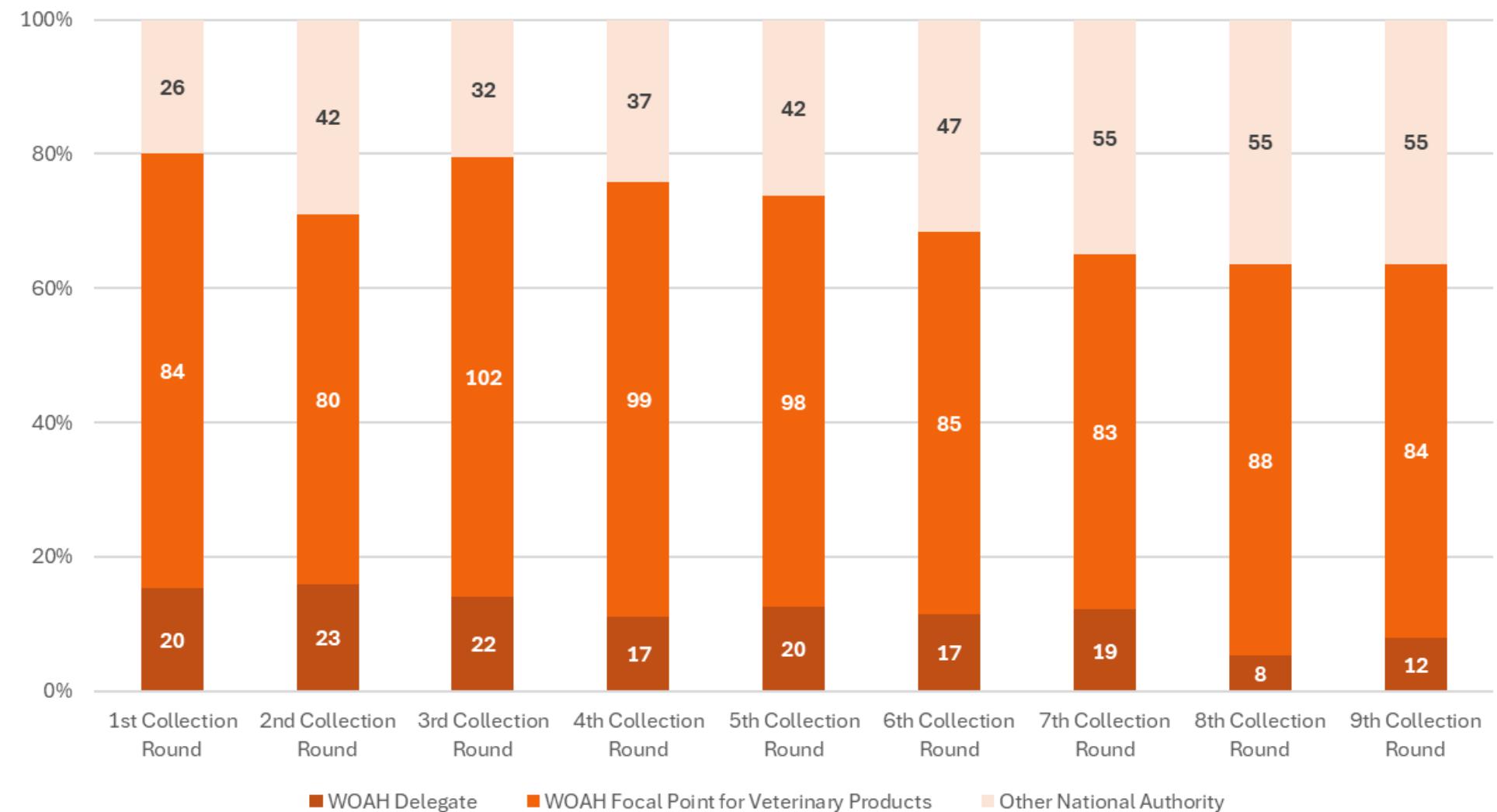
Guidance (PDF)

Annex for
calculations (PDF)

Calculation Module (Excel)

1. Delegates

A Delegate is appointed by the national government and is most frequently the Member's Chief Veterinary Officer. The World Assembly of 183 Delegates is the highest authority of WOAH.


2. Focal Points for Veterinary Products (FPVP)

A Focal Point for Veterinary (FPVP) is appointed by the Delegate and is often the head of the regulatory authority for veterinary products.

3. Other National Authority (ONA)

Appointed by the FPVP with the Delegate's approval, usually works within the FPVP's team or under the regulatory authority for veterinary products if the FPVP is not part of that agency.

Data collection

Methods

frontiers
in Veterinary Science

METHODS
published: 25 September 2019
doi: 10.3389/fvets.2019.00317

OIE Annual Report on Antimicrobial Agents Intended for Use in Animals: Methods Used

Defy Gochez^{1*}, Margot Reicek¹, Jorge Pinto Ferreira², Morgan Jeannin¹, Gerard Moulin² and Elisabeth Erlacher-Vindel¹

¹ Antimicrobial Resistance and Veterinary Products Department, World Organisation for Animal Health (OIE), Paris, France;

² Agence nationale de Sécurité Sanitaire, Alimentation, Environnement, Travail (ANSES), Fougères, France

OPEN ACCESS

Edited by:
Miguel Angel Moreda,
Complutense University of Madrid, Spain

Reviewed by:
Jeanne Magona,
City University of Hong Kong,
Hong Kong

Takaye Beyene Tufa,
Addis Ababa University, Ethiopia

*Correspondence:
Defy Gochez
gochez@oie.int

Specialty section:
This article was submitted to
Veterinary Epidemiology and
Epidemiology
a section of the journal
Frontiers in Veterinary Science

Received: 29 March 2019
Accepted: 04 September 2019
Published: 25 September 2019

Citation:
Gochez D, Reicek M, Pinto Ferreira J,
Jeannin M, Moulin G and
Erlacher-Vindel E (2019) OIE Annual
Report on Antimicrobial Agents
Intended for Use in Animals: Methods
Used. *Front. Vet. Sci.* 6:317.
doi: 10.3389/fvets.2019.00317

INTRODUCTION

The World Organisation for Animal Health (OIE) has worked actively for more than two decades on veterinary products, including antimicrobial agents, and developed a coherent strategy for its activities in this area (1). Monitoring of antimicrobial use (AMU) is an important source of information that together with surveillance of AMR, can be used for the assessment

J Antimicrob Chemother
https://doi.org/10.1093/jac/dkab441

Journal of
Antimicrobial
Chemotherapy

Comparison of different biomass methodologies to adjust sales data on veterinary antimicrobials in the USA

Ece Bulut¹* and Renata Ivanek¹

¹ Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA

*Corresponding author. E-mail: e6663@cornell.edu

Received 31 January 2021; accepted 4 November 2021

Objectives: The United States (US) FDA, European Surveillance of Veterinary Antimicrobial Consumption (ESVAC), Public Health Agency of Canada (PHAC) and World Organisation for Animal Health (OIE) established methodologies that characterize antimicrobial sales for use in food animals by adjusting the sales by animal biomass. Our aim was to review and compare these methodologies on US-specific data.

Methods: Annual antimicrobial sales for cattle, swine, chickens and turkeys in the USA between 2016 and 2018 were adjusted by the FDA, ESVAC, PHAC and OIE methodologies. To better understand the advantages and disadvantages of the four methodologies, their biomass denominators were compared regarding the level of detail accounted for in the estimated US livestock biomass, their ability to observe temporal trends in animal biomass within a country and practicality in biomass estimation for comparing antimicrobial sales across countries.

Results: The four methodologies resulted in substantially different estimates of biomass-adjusted antimicrobial sales for use in US food animals. The 2018 estimates were the highest with the ESVAC methodology (314.7 mg of active antimicrobial ingredient/kg of animal biomass), followed by PHAC (191.5 mg/kg), FDA (127.6 mg/kg) and OIE (111.5 mg/kg). The animal weight parameters used in each methodology had the most impact on the biomass-adjusted sales estimates.

Conclusions: In regard to the estimation of the animal biomass, no methodology was found to be perfect; however, the FDA methodology had the best resolution in characterizing the US livestock biomass while the OIE methodology was best for biomass estimation for global monitoring of antimicrobial sales for use in food animals.

Introduction

Antimicrobial resistance is a global health crisis.¹ While emergence and spread of antimicrobial resistance is a complex multicausal event, the overuse and misuse of antimicrobials in food animals is a contributor to this crisis and a potential source of antimicrobial-resistant infections in humans.^{2,3} Current evidence shows that antimicrobial-resistant organisms can be transferred from food animals to humans through direct contact,^{4,5} the food chain^{6–9} and the environment,^{10,11} and shared between food animals and humans.^{12–14} The expanding human population is becoming more reliant on animals for food, which induces large-scale food animal operations and expands antimicrobial use in food animals. This adds to the ongoing problem of overuse and inappropriate use of antimicrobials in food animals and increases the health risks in humans from resistant organisms.^{15–18}

In response to the global public health crisis of antimicrobial resistance, several international initiatives to reduce the use of antimicrobials in food animals. For example, use of veterinary antimicrobials for growth promotion was outlawed, prohibited or voluntarily withdrawn in the EU, Canada and the USA.^{20–22} Currently, antimicrobials are only approved for use in food animals to treat, control and prevent disease in these countries (and member countries of the EU).

In addition to the restrictions in the use of antimicrobials, monitoring antimicrobial use in animals also supports the fight against antimicrobial resistance. Monitoring of antimicrobial use can be used to assess whether the regulations aimed at antimicrobial use are effective, help determine whether there is an excessive use of antimicrobials, guide future policies, provide a general understanding of veterinary antimicrobial use over time and, most importantly, help study the association between antimicrobial use

© The Author(s) 2021. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (<https://creativecommons.org/licenses/by-nc/4.0/>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

<https://doi.org/10.1093/jac/dkab441>

<https://doi.org/10.3389/fvets.2019.00317>

JAC Antimicrob Resist
https://doi.org/10.1093/jac/diac017

JAC-
Antimicrobial
Resistance

From OIE standards to responsible and prudent use of antimicrobials: supporting stewardship for the use of antimicrobial agents in animals

Jorge Pinto Ferreira¹, Defy Gochez², Morgan Jeannin¹, Mduduzi Welcome Mogongo³, Camille Loi¹, Karen Bucher⁴, Gerard Moulin² and Elisabeth Erlacher-Vindel¹

¹ World Organisation for Animal Health (OIE), Paris, France; ² French agency for veterinary medicinal products, French agency for food, environmental and occupational health safety, Fougères, France

*Corresponding author. E-mail: d.gochez@oie.int

The global action plan (GAP) on antimicrobial resistance (AMR) advocated the development of national action plans on AMR and the implementation of plans aimed at preventing, combating and monitoring AMR. The World Organisation for Animal Health (OIE)'s strategy on AMR and the prudent use of antimicrobials is aligned with the GAP and recognizes the importance of a One Health approach. This paper reviews the goals, tools and strategies that the OIE has in place to support its Members, envisioning an increased awareness of them and ultimately an increased implementation of the OIE standards. The OIE standards are endorsed by vote of all the OIE Members and are the result of the work of the OIE Standing Committee on Veterinary Public Health and the Agents of Veterinary Importance, which includes specific recommendations on the use of antimicrobial agents, is also of particular importance for antimicrobial stewardship. OIE's antimicrobial use (AMU) data collection started in 2015 and has been developed in particular to measure trends in AMU. An annual report is published as an output of this data collection. An AMU IT database system is being developed. The OIE provides assistance to its 182 Members to strengthen the implementation of OIE standards via its support of good governance, the Performance of Veterinary Services (PVS) Policy, PVS Veterinary Legislative Support Program and training of veterinary professionals. The OIE also provides assistance to its members in the implementation of the GAP, targeting the monitoring of the implementation of the OIE standards. Cooperation agreements between the OIE and intergovernmental organizations and non-governmental organizations are instrumental for the increase of the dissemination and implementation of the OIE standards and guidelines.

1. Introduction

In the framework of the global action plan on antimicrobial resistance (GAP) adopted in 2015, all countries, through the decisions of the WHO World Health Assembly, the FAO Conference and the World Assembly of OIE Delegates, agreed to support the development of national action plans (NAPs) on antimicrobial resistance (AMR) in line with the GAP and to implement policies and plans aimed at preventing, combating and monitoring AMR.^{1–4}

Harmonization, through the implementation of international standards, provides a common approach⁵ and a point of reference for more consistent development and decision-making,⁶ and enables reporting on progress while achieving the objectives of the GAP.

While recognizing the importance of and need for animal disease prevention, the focus of this paper is on the World Organisation for Animal Health (OIE) support for implementation of the OIE List of Antimicrobial Agents of Veterinary Importance, and its recommendations—important stewardship guidance. The final section features some of the positive consequences that can take place

© The Author(s) 2022. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (<https://creativecommons.org/licenses/by-nc/4.0/>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

<https://doi.org/10.1093/jac/diac017>

Data processing

Qualitative Data

(Part A & B of the Baseline Information sheet)

All countries can answer

Quantitative Data

(Part C of the Baseline Information sheet)

Only countries reporting antimicrobial quantities can answer

Total antimicrobial use (kg)

Adjusted by biomass (mg/kg)

Type of use:

- veterinary medical use
- growth promotion

For the purposes of the WOAH database, **animal groups**

means:

- terrestrial food-producing animals
- aquatic food-producing animals
- non-food-producing animals

Reporting Option 1

Reporting Option 2

Reporting Option 3

Reporting Option 4

(to be launched in September 2026)

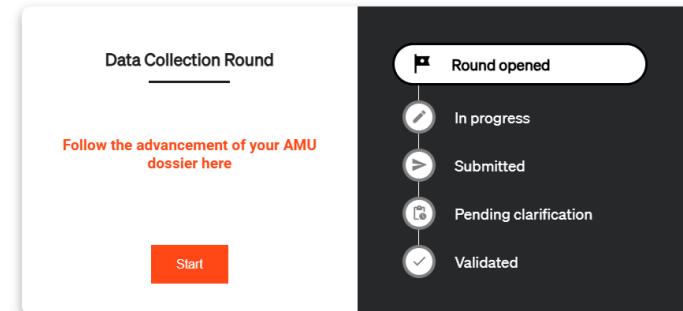
- ✓ Antimicrobial classes
- ✓ Type of use

- ✓ Antimicrobial classes
- ✓ Type of use
- ✓ **Animal groups**

- ✓ Antimicrobial classes
- ✓ Type of use
- ✓ Animal groups
- ✓ **Routes of administration**

- ✓ Antimicrobial classes
- ✓ Type of use
- ✓ Animal groups
- ✓ Routes of administration
- ✓ **Animal species**

Portals

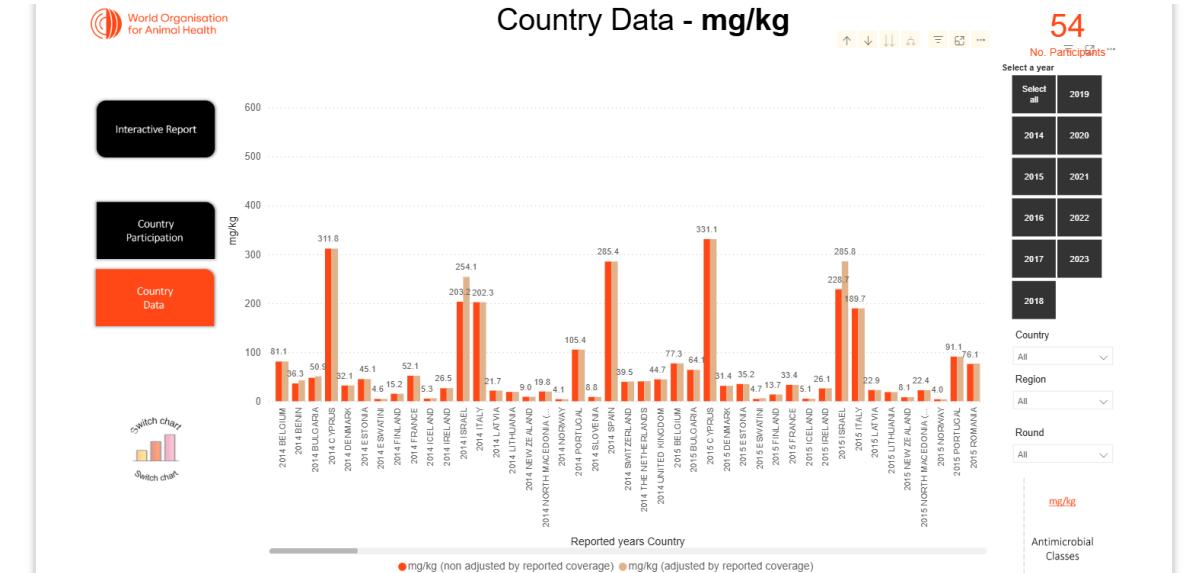

Country Portal (launched Sept 2022)

- Visuals at country level (for country only)
- Data aggregated by classes
- Data at molecule level (only for those using the Calculation Module)

Public Portal (launched May 2023)

- Visuals at global level
- Visuals at regional level
- Visuals at country level (only those that decided to be public)

Welcome to your national portal



Need help to calculate the antimicrobial quantities?
Enter your information by veterinary product in the

Calculation Module

Country Data - mg/kg

The inventory

Recommendation n°4

2nd OIE (WOAH) Global Conference on Antimicrobial Resistance

October 2018

To further develop the OIE data collection on Antimicrobial Agents Intended for Use in Animals, converting the current spreadsheet format to a database system, able to accommodate data submissions by animal species, and its connection to the World Animal Health Information System (WAHIS) **and also allowing addition of data from field studies.**

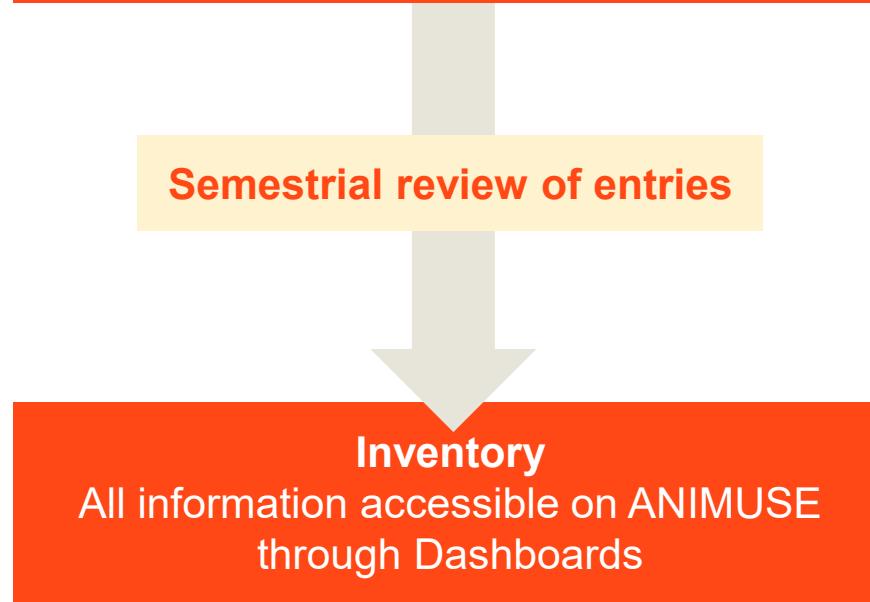
Ensure that National authorities have **access** to the information on projects conducted in their countries.

Have a better **understanding** of the situation of AMU field level monitoring projects globally.

Complement imports and sales data and empower National authorities for informed decision making.

Better understanding **methodologies** of in-countries projects for providing better support in collecting data.

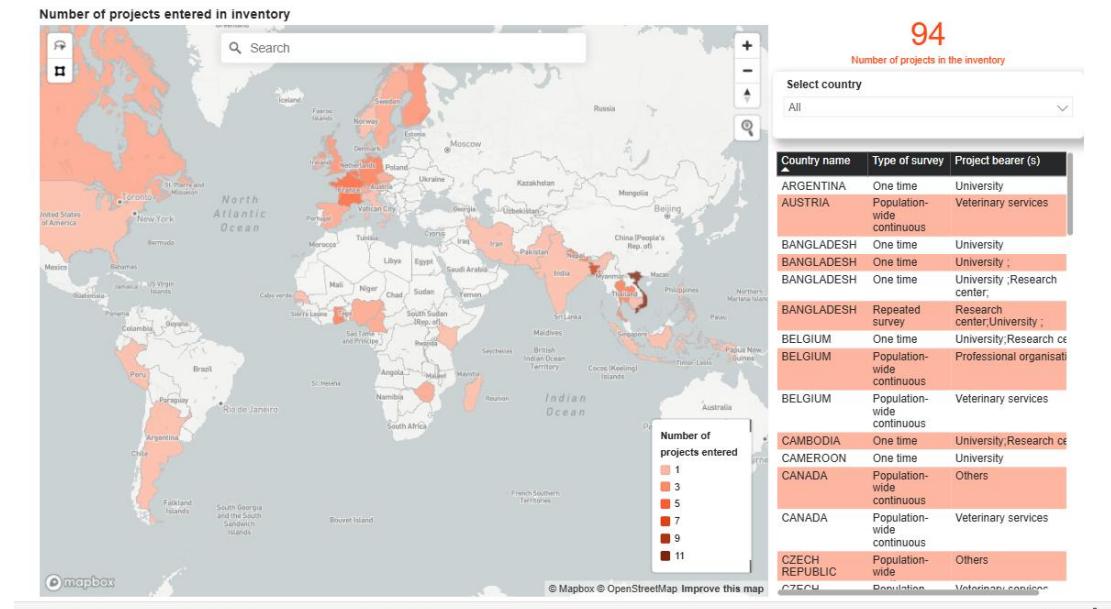
The inventory

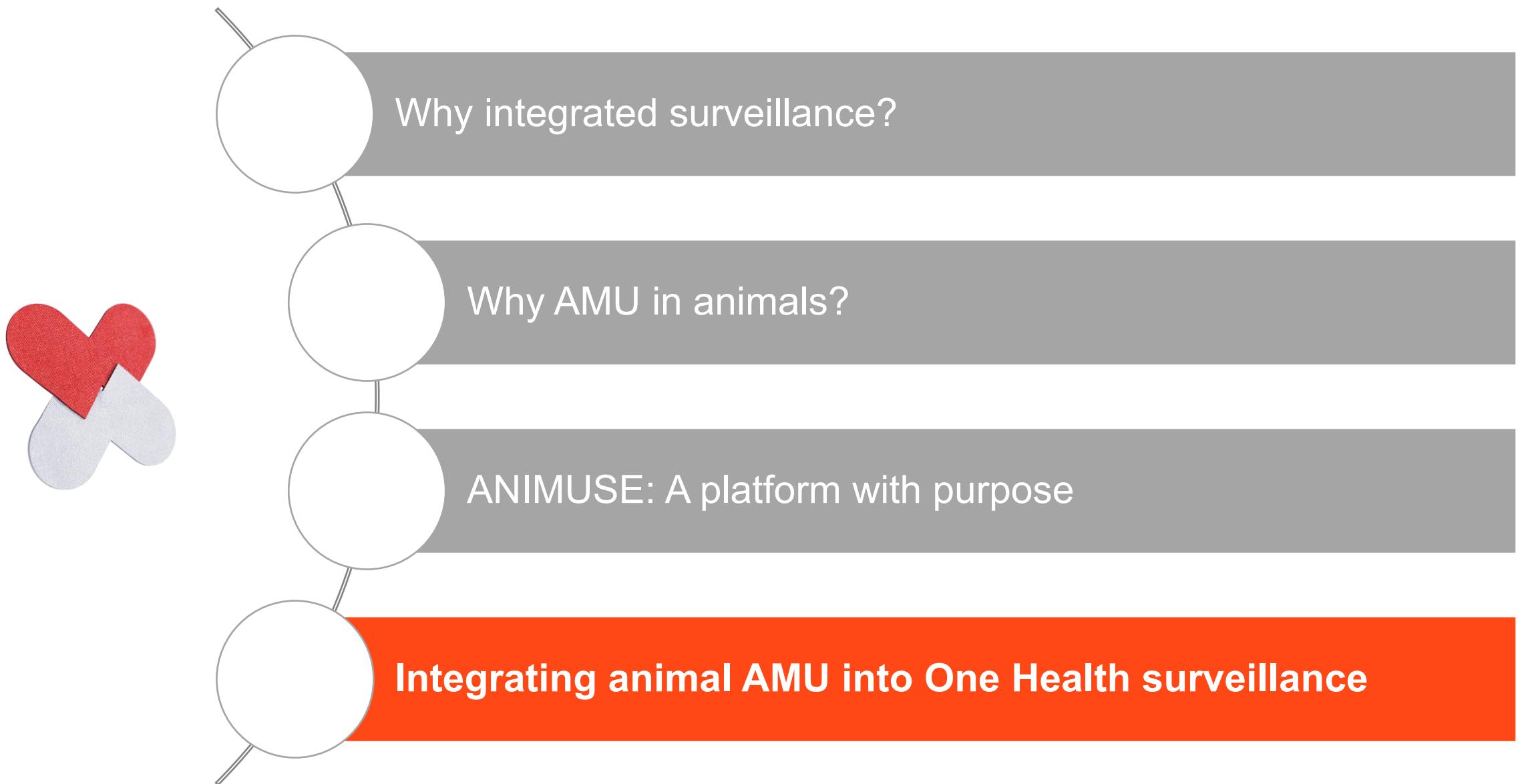

A Survey (*Microsoft Form*)

Contextual information on the project

- Publicly accessible on ANIMUSE
- To be filled by countries and relevant stakeholders

3 sections - 26 questions


General Information | Data Information
Use of data: data reporting and communication

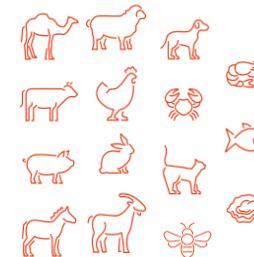
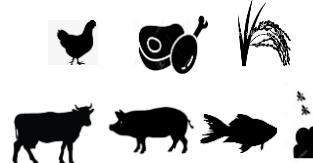


Inventory of Projects on Field Level AMU Monitoring

The purpose of this form is to collect information on projects monitoring AMU at field level. The form is designed to allow KAP or qualitative AMU studies to be added. Projects information will be available on ANIMUSE, and each country project information will be accessible by National Authorities and the public. To be able to submit the form all mandatory questions need to be answered. **The completion of this form will take approximately less than 10 minutes.** New survey submissions will be analysed for inclusion to the Inventory dashboard on a **semestrial basis**, available here: <https://amu.woah.org/amu-system-portal/cms/view/55da662f-b4a2-4f26-9320-83b0be739034/7525dce2-0b79-4c14-a865-edc7b95e8e7>

When you submit this form, it will not automatically collect your details like name and email address unless you provide it yourself.

Quadrupartite Global Systems



1

Human System

AMR/AMU
in human

2

Animal and Agricultural System

World Organisation
for Animal Health**ANIMUSE** Global
DatabaseAMU
in animalsFood and Agriculture
Organization of the
United Nations**InFARM** The International FAO Antimicrobial
Resistance Monitoring SystemAMR
in animals and
food

3

Environmental Health

AMR
in environment and
residues**Global Integrated Surveillance for AMR and AMU (GISSA)**

2016: Initial meeting
FAO, WHO, WOAH

2017: TISSA concept
approved by Tripartite

2018: TISSA business
plan approved

2019: TISSA needs
assessment conducted

2020: Development of TISSA
approved by Tripartite

2024: Stage 0 2025: Stage 1

Initial Development

Stage 0: 2020-2024

- Mapping and convergence of data models (ANIMUSE, GLASS, InFARM)
- Develop the GISSA database
- Develop webpage for dissemination of data and information on AMR and AMU in animal and human sectors
- Develop online interactive reports/visualizations
- Develop the test version GISSA platform

GISSA Consolidation

Stage 1: 2025-2027

- Global interface
- Integrate GISSA reporting in ANIMUSE, GLASS, InFARM systems
- Upgrade data models
- Improve GISSA online reports/visualizations
- Integrate environment (UNEP) and plants (FAO) in GISSA
- Public release of GISSA platform with visualizations

GISSA Expansion

Stage 2: 2028-2030

- Country level interfaces
- Enable a selected number of countries to download their multi-sectorial AMR and AMU data
- Expand the online reports to provide country level reports/visualizations

Fully Functional & Integrated

Stage 3: 2031-2035

- Train countries on integrated analysis of AMR and AMU data from GISSA
- Global, regional integrated analyses are provided by GISSA for policy makers to establish strategies and actions
- Regular QPT integrated surveillance reports are published on GISSA

Food and Agriculture
Organization of the
United Nations

GISSA Stage 1 Consolidation (2025-2027)

Data Model	<ul style="list-style-type: none">• Review and update the data model, reflecting changes since Stage 0<ul style="list-style-type: none">◦ incorporate evolutions from GLASS and ANIMUSE◦ integrate feedback from InFARM from the first data collection
Portal (Global interface)	<ul style="list-style-type: none">• Define data manager(s), data upload frequency to GISSA, and data validation.• Re-test data in pre-production (testing) and production environments.
Visuals	<ul style="list-style-type: none">• Agree on visuals for integrated AMU/AMR charts.• Validate data and map visualisations.• Develop basic instructional materials.

Food and Agriculture
Organization of the
United Nations

World Health
Organization

World Organisation
for Animal Health

GISSA Stage 1 Consolidation (2025-2027)

Human Sector

AMR

AMU

177 countries providing data

World Organisation
for Animal Health

Animal Sector

AMU


ANIMUSE Global Database130 countries providing data with 53
countries potentially shared in GISSAFood and Agriculture
Organization of the
United Nations

Plants & Crops

AMR

Animal & Food

AMU

InFARM

The International FAO Antimicrobial
Resistance Monitoring SystemProjected 2025: 40
countries providing data

GISSA Platform

United Nations

A/RES/79/2

General Assembly

Distr.: General
11 October 2024

Seventy-ninth session
Agenda item 127
Global health and foreign policy

Resolution adopted by the General Assembly
on 7 October 2024

[without reference to a Main Committee (A/79/L.5)]

79/2. Political declaration of the high-level meeting on antimicrobial resistance

The General Assembly

Adopts the political declaration of the high-level meeting on antimicrobial resistance, held on 26 September 2024 in accordance with its resolution 78/269 of 25 March 2024, as contained in the annex to the present resolution.

*18th plenary meeting
7 October 2024*

Annex

Political declaration of the high-level meeting on antimicrobial resistance

We, Heads of State and Government and representatives of States and Governments, are assembled at the United Nations on 26 September 2024, in accordance with General Assembly resolution 78/269 of 25 March 2024, to review progress on global, regional and national efforts to tackle antimicrobial resistance, to identify gaps and invest in sustainable solutions to strengthen and accelerate multisectoral progress at all levels, through a One Health approach, with a view to scaling up the global effort to build a healthier world based on equity and leaving no one behind, and in this regard we:

1. Recognize that antimicrobial resistance is one of the most urgent global health threats and development challenges and demands immediate action to safeguard our ability to treat human, animal and plant diseases, as well as to enhance food safety, food security and nutrition, foster economic development, equity and a

88

99

Encourage all countries to report quality surveillance data on antimicrobial resistance and antimicrobial use by 2030, through existing global surveillance systems, including the Global Antimicrobial Resistance and Use Surveillance System (GLASS), the Global Database on Antimicrobial Use in Animals (ANIMUSE) and the International FAO Antimicrobial Resistance Monitoring (InFARM) platform, for use in the **Quadrupartite Global Integrated System for Surveillance of Antimicrobial Resistance and Antimicrobial Usage (GISSA)**;

88

Data is not the end, it's the beginning.

Thank you!

12, rue de Prony, 75017 Paris, France

T. +33 (0)1 44 15 19 49

F. +33 (0)1 42 67 09 87

woah@woah.int

www.woah.org

[Facebook](#)

[Twitter](#)

[Instagram](#)

[LinkedIn](#)

[YouTube](#)

[Flickr](#)

World
Organisation
for Animal
Health

Organisation
mondiale
de la santé
animale

Organización
Mundial
de Sanidad
Animal

