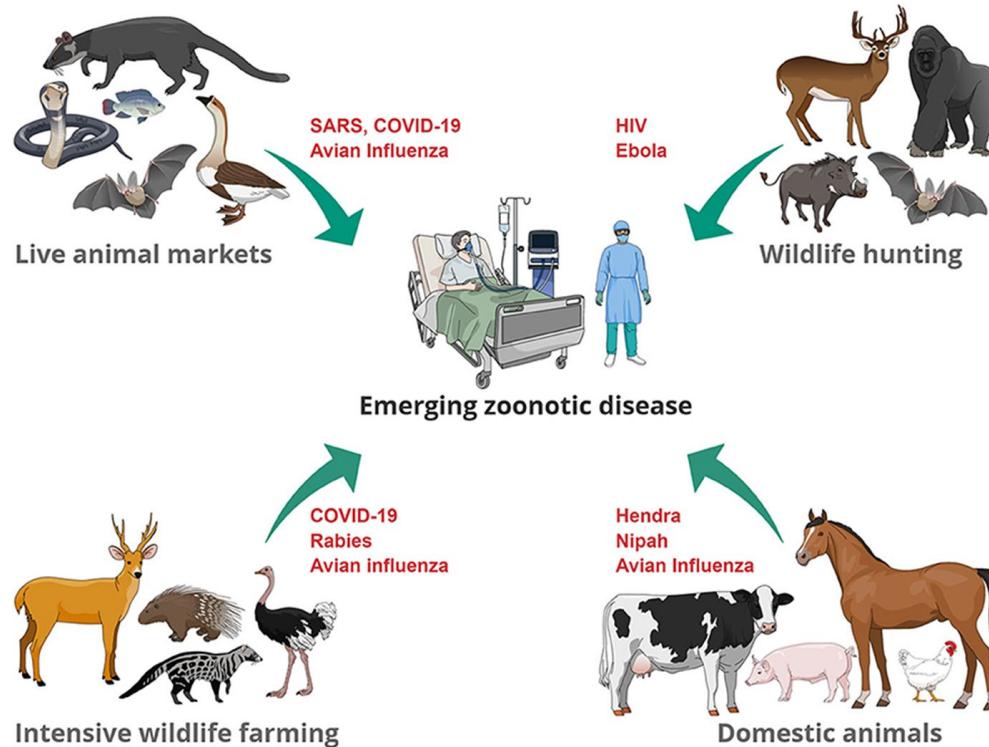


Veterinary Intelligence: From Zoonotic Threats to Global Health Preparedness

**Alessio Lorusso, IZS-Teramo
9 Marzo 2024**



National and International Ref Labs: EURL Rift, FAO CoVs, Exotic diseases

Outline

- Current scenario, One health
- Major driver: CoVs, NGS

- Major public health emergencies (SARS; 2002–2004), Ebola (2013–2016), Zika virus (2015–2016), (COVID-19) pandemic
- Since 1970, zoonotic diseases have accounted for more than 75% of emerging and re-emerging ID, leading to 2.5 billion infections and 2.7 million deaths each year
- Lack of cross-cooperation among human, animal and environmental/ecosystem health agencies: scarce prevention and containment of epidemics

TERAMO

ISTITUTO
ZOOPROFILATTICO
SPERIMENTALE
DELL'ABRUZZO
E DEL MOLISE
"G. CAPORALE"

IZS.IT

One Health

People who protect
human, animal, and
environmental health,
and other partners

To achieve the best
health outcomes for
people, animals, plants,
and our environment

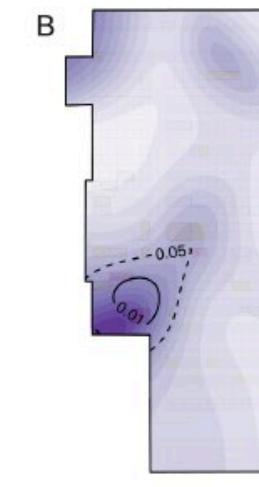
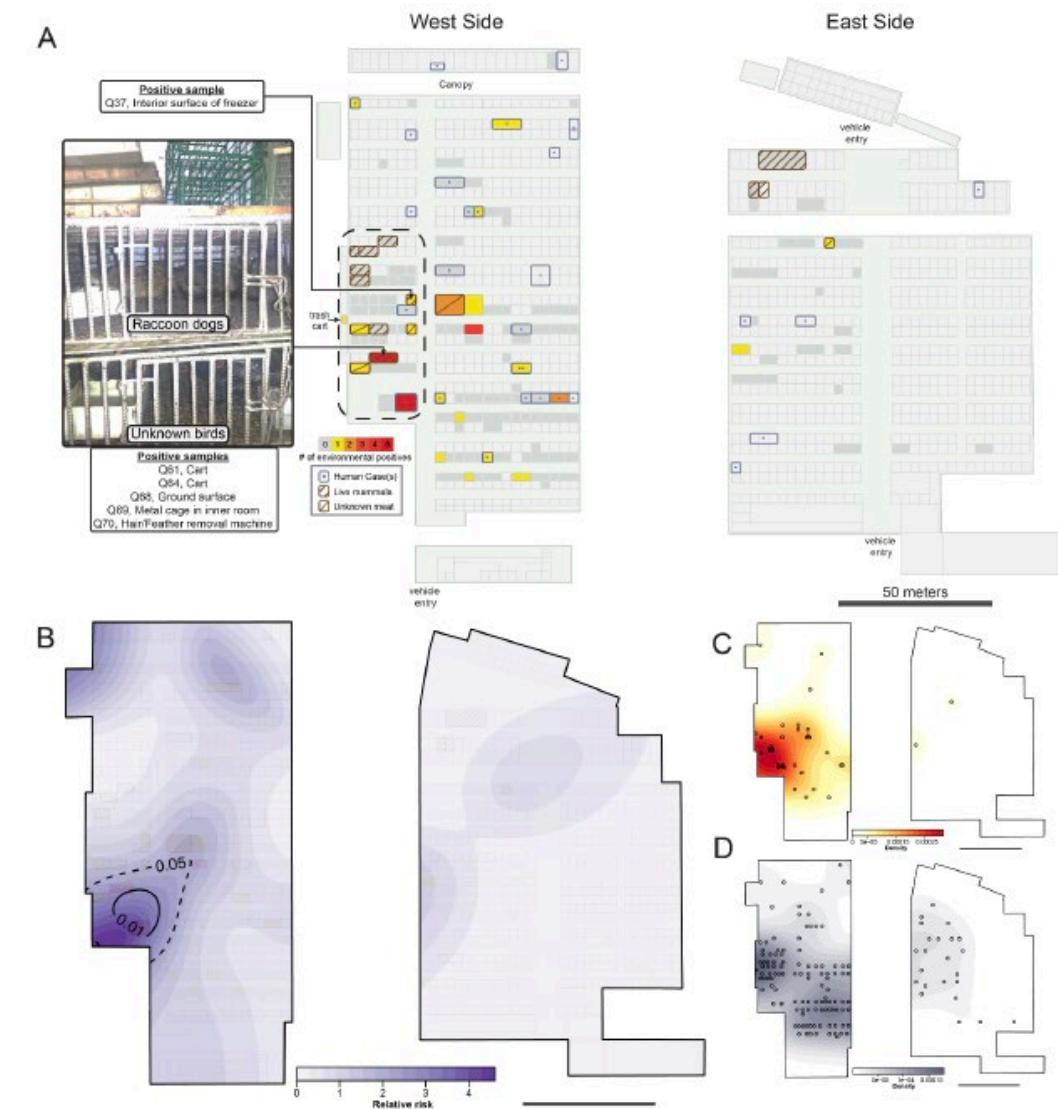
Centers for Disease
Control and Prevention
National Center for Emerging and
Zoonotic Infectious Diseases

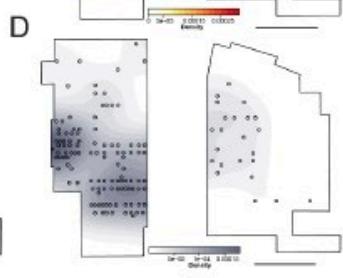
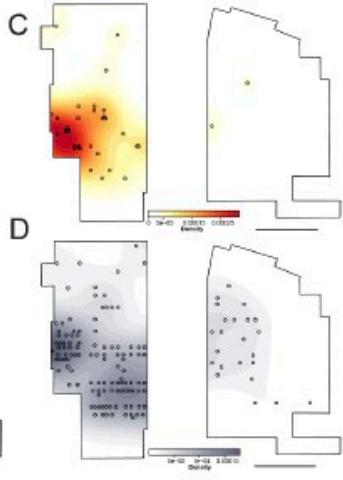
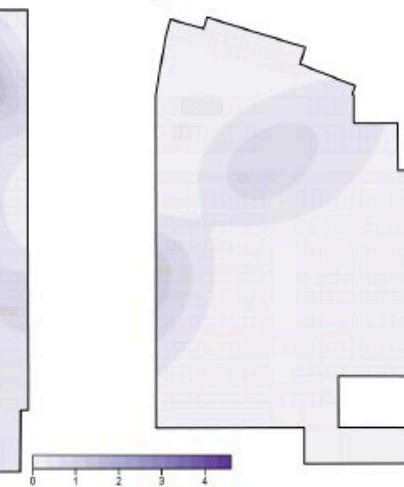
CS302365-A

IZS


TERAMO

ISTITUTO
ZOOPOFILATTICO
SPERIMENTALE
DELL'ABRUZZO
E DEL MOLISE
"G. CAPORALE"



IZS.IT




Susceptible Wildlife was Sold in the Huanan Market in 2019

- Strong resemblance to the emergence of SARS-CoV-1 in 2002/2003

- Most positive environmental samples (Jan 2020) come from the south-west corner of the market that sold wildlife

SARS-CoV-2-Like Viruses in *Rhinolophus* Bats

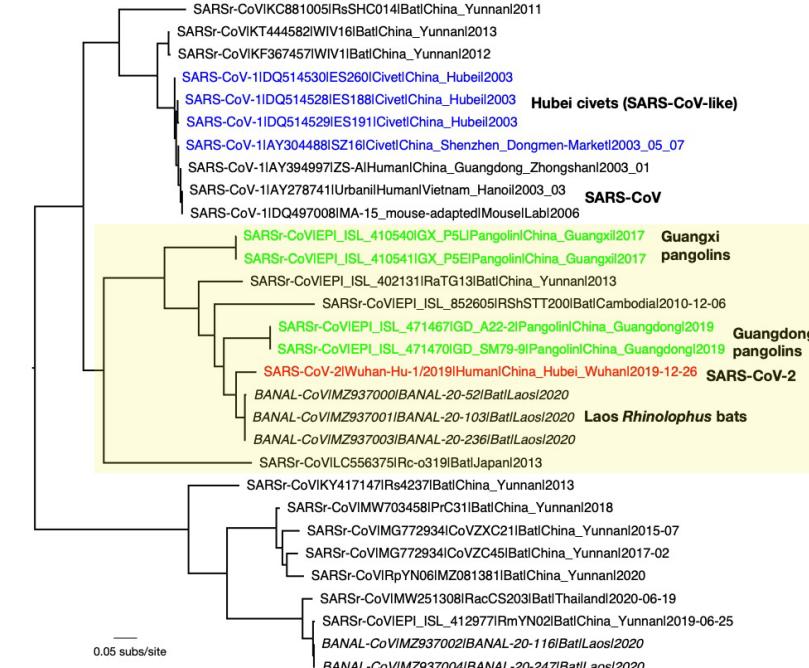
Article

Bat coronaviruses related to SARS-CoV-2 and infectious for human cells

<https://doi.org/10.1038/s41586-022-04532-4>

Sarah Temmann^{1,2,3}, Khamsing Vongphaylonth^{3,4}, Eduard Baquero^{4,5}, Sandie Munier^{5,6}, Massimiliano Bonomi⁷, Béatrice Regnault², Bounavong Douangbounphabha⁸, Yasaman Karim¹, Delphine Chrétien³, Daoasavan Sanamxay⁹, Vilakhan Xayaphet⁹, Phethoumphon Paphaphanh¹⁰, Vincent Lacoste¹¹, Somphavanh Somlor¹², Khaithong Lakeomkany¹, Nothasin Phomvanh¹¹, Philippe Rostaing¹³, Océane Dehan^{14,15}, Faustine Amaral¹, Flora Donat^{16,17}, Thomas Bigot¹⁸, Michael Nilges⁶, Félix A. Rey⁴, Sylvie van der Werf¹⁹, Paul T. Brey²⁰ and Marc Eloit^{20,23}

- Banal-20-52, from a *Rhinolophus* in bats from Laos, is the **closest** relative of SARS-CoV-2 (96.8%)
- Very close to SARS-CoV-2 in the receptor binding domain



Horseshoe bat (*Rhinolophus affinis*)

Functional core of SARS-CoV-2 exists in nature

Spike Protein - Receptor Binding Domain

Origin and evolution of pathogenic coronaviruses

Jie Cui¹ , Fang Li² and Zheng-Li Shi¹ *

....given the prevalence and great genetic diversity of bat SARSr-CoVs, their close coexistence and the frequent recombination of CoVs, it is expected that novel variants will emerge in the future.....

Severe Acute Respiratory Syndrome Coronavirus as an Emerging and Reemerging Infection

Vincent C. C. Cheng, Susanna K. P. Lau, Patrick C. Y. Woo, and Kwok Yu

State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Research Centre in Immunology, The University of Hong Kong, Hong Kong Special Administrative Region, China

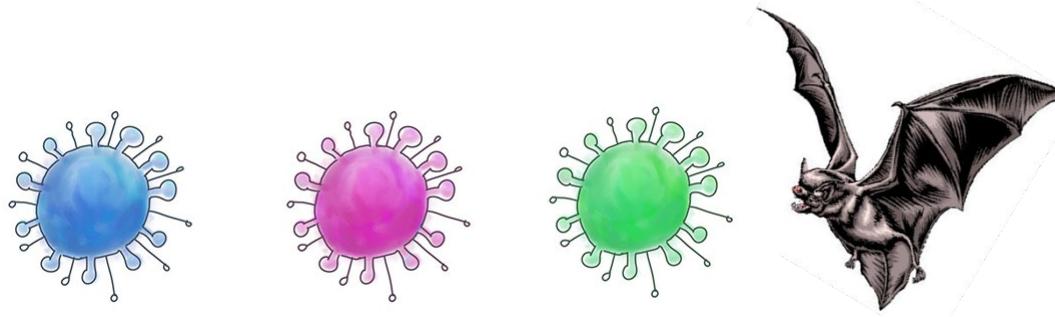
SARS-CoV AS AN AGENT OF EMERGING/REEMERGING INFECTION 683

or immunization (Table 10). The Koch's postulates for S-CoV as a causative agent of SARS were established using rhesus macaques (*Macaca mulatta*), which demonstrated clinical and pathophysiological features similar to those found in humans. On the contrary, African green monkeys (*Cercopithecus aethiops*) did not develop significant lung pathology with the SARS-CoV. The lack of consistency between the results of rhesus, cynomolgus, and African green monkeys in experimental SARS was noted in another study (286). However, these large mammals are expensive and difficult to handle. BALB/c mice demonstrated asymptomatic SARS in lungs and nasal turbinates by intranasal inoculation. The disease was not significantly different from the finding of immunological Th1-biased C57BL/6 mice that were 12 to 14 months old (287). Asymptomatic SARS in BALB/c mice was highly transmissible to other mice. In contrast, C57BL/6 mice that were 12 to 14 months old did not develop SARS (287). Asymptomatic SARS in C57BL/6 mice was not transmissible to other mice. It is interesting that mouse-adapted SARS-CoV was able to cause SARS in C57BL/6 mice, but not in BALB/c mice (287). The reason for this difference is not clear.

SHOULD WE BE READY FOR THE REEMERGENCE OF SARS?

The medical and scientific community demonstrated remarkable efforts in the understanding and control of SARS within a short time, as evident by over 4,000 publications available online. Despite these achievements, gaps still exist in terms of the molecular basis of the physical stability and transmissibility of this virus, the molecular and immunological basis of disease pathogenesis in humans, screening tests for early or cryptic SARS cases, foolproof infection control procedures for patient care, effective antivirals or antiviral combinations, the usefulness of immunomodulatory agents for late presenters, an effective vaccine with no immune enhancement, and the immediate animal host that transmitted the virus to civets in the market at the beginning of the epidemic. Coronaviruses are well known to undergo genetic recombination (375), which may lead to new genotypes and outbreaks. The presence of a large reservoir of SARS-CoV-like viruses in horseshoe bats, together with the culture of eating exotic mammals in southern China, is a time bomb. The possibility of the reemergence of SARS and other novel viruses from animals or laboratories and therefore the need for preparedness should not be ignored.

IZS


TERAMO

ISTITUTO
ZOOPROFILATTICO
SPERIMENTALE
DELL'ABRUZZO
E DEL MOLISE
"G. CAPORALE"

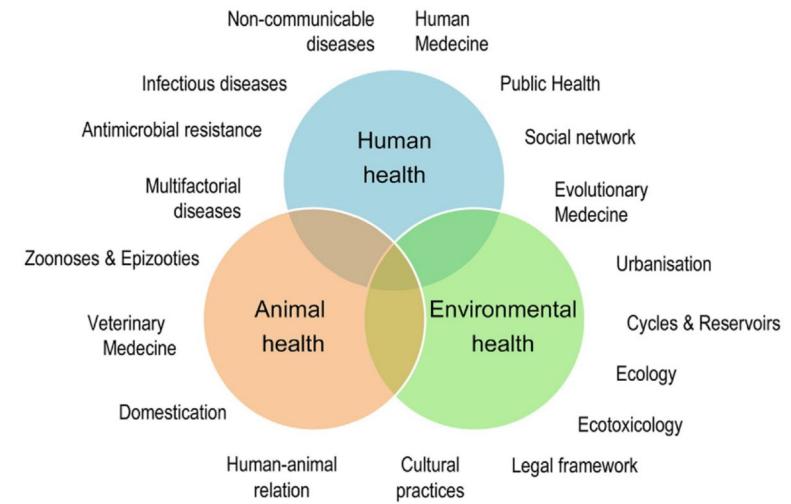
IZS.IT

Diagnostic/Characterization

- **First CoV identified in bats, 2005; Minunacovirus subgenus**
- **35 % of the bat virome sequenced to date is composed of CoVs, 2014**
- **Recombinant origin of SARS-CoV-1, 2013**
- **No SARS-CoV-1 isolates from bats**

**IT'S NOT ROCKET
SCIENCE!**
(OH WAIT, YES IT IS!)

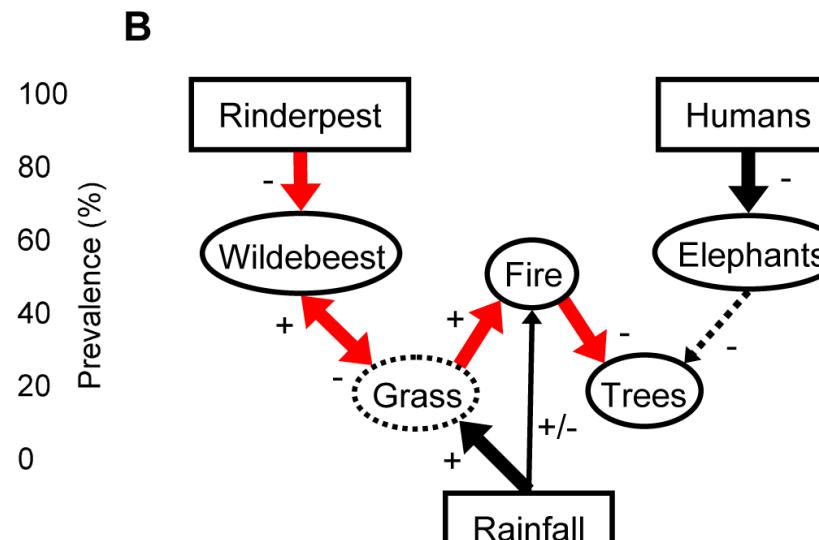
A new member of the *Pteropine Orthoreovirus* species isolated from fruit bats imported to Italy


Alessio Lorusso*, Liana Teodori, Alessandra Leone, Maurilia Marcacci, Iolanda Mangone, Massimiliano Orsini, Andrea Capobianco-Dondona, Cesare Camma', Federica Monaco, Giovanni Savini

Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, IZSAM, Teramo, Italy

One Health approach

Rome, G20



..... The Rome Declaration rightly emphasises **the importance of pursuing a One Health approach** - and here I'm coming to climate -, to preserve human, animal and environmental safety. **This is the key priority of Italy's G20 Presidency.**

The Scientific Expert Panel has stated how most infectious diseases are caused by **pathogens** that are **derived from animals**.

Their emergence is largely driven by **deforestation**, wildlife exploitation, and other **human activities**. Effective environmental action can help to defend animal welfare and ultimately mitigate the risk of new health threats.....

Complex Ecological Interactions: Rinderpest

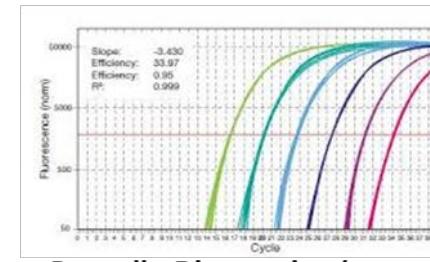
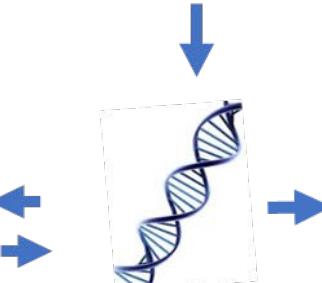
- Rinderpest (paramyxovirus) caused an epidemic in East Africa, leading to a reduction in the size of wildebeest and buffalo populations.
- This reduced grazing pressure, leading to more fires that suppressed the establishment of trees, reducing a major carbon sink and changing the ecosystem from woodland to grassland.
- The reduction in grazing mammals led to tsetse flies switching their prey to humans, resulting in an epidemic of African trypanosomiasis.
- The ecosystem reverted to a woodland state when rinderpest was eradicated through vaccination and the number of fires was reduced.**

Holdo RM, et al. PLoS Biol. 7:e1000210; 2009.

(A) Population size of wildebeest in the Serengeti and seroprevalence of rinderpest. (B) Relationships between ecosystem components, and particularly how they impact tree population dynamics, a major carbon sink. A causal pathway linking rinderpest with tree population numbers is shown in red.

Diagnostica

Accettazione e Controllo campioni umani ed animali/

Attività di campo

Illumina

Mini Ion
(patogeni ignoti)

Wildlife/Vectors/Food

Attività di sorveglianza/Pathogen discovery

Results to Customer

Pannello Diagnostico (patogeni noti)

Internal workflow for storage and R&D

Bionfo database

Studi epidemiologici
Sviluppo di Test Diagnostici

Isolamento/Caratterizzazione

Studi di Patogenesi

Banca Antigeni

Vaccine

Bioinfo database

Epizootic Haemorrhagic Disease virus serotype 8 in Tunisia, 2021

Soufien Sghaier¹, Corinne Sailleau², Maurilia Marcacci³, Sarah Thabet¹, Valentina Curini³, Thameur Ben Hassine¹, Liana Teodori³, Ottavio Portanti³, Salah Hammami⁵, Lucija Jurisic^{3,6}, Massimo Spedicato³, Lydie Postic², Ines Gazzani⁷, Raja Ben Osman⁸, Stephan Zientara², Emmanuel Breard², Paolo Calistri³, Juergen A. Richt⁹, Edward C. Holmes¹⁰, Giovanni Savini³, Francesca Di Giallonardo¹¹, and Alessio Lorusso^{3*}

Original Paper

Cite this article: Leopardi S, Desiato R, Mazzucato M, Orusa R, Obber F, Averaimo D, Berjaoui S, Canziani S, Capucchio MT, Conti R, di Bella S, Festa F, Garofalo L, Lelli D, Madrau MP, Mandola ML, Moreno Martin AM, Peletto S, Pirani S, Robetto S, Torresi C, Varotto M, Citterio C, Terregino C (2023). One health surveillance strategy for coronaviruses in Italian wildlife. *Epidemiology and Infection*, **151**, e96, 1–10
<https://doi.org/10.1017/S095026882300081X>

Received: 27 January 2023

Accepted: 19 May 2023

Keywords:

Coronaviruses; one health; surveillance;

“...survey carried out in Italy with the double objective of uncovering CoV diversity associated with wildlife and of excluding the establishment of a reservoir for SARS-CoV-2 in particularly susceptible or exposed species.... Two novel viruses likely belonging to a novel CoV genus were found in mustelids.”

One health surveillance strategy for coronaviruses in Italian wildlife

Stefania Leopardi^{1,2} , Rosanna Desiato³, Matteo Mazzucato¹, Riccardo Orusa^{3,4}, Federica Obber¹, Daniela Averaimo⁵, Shadia Berjaoui⁵, Sabrina Canziani⁶, Maria Teresa Capucchio⁷, Raffaella Conti⁸, Santina di Bella⁹, Francesca Festa¹, Luisa Garofalo⁸ , Davide Lelli^{6,10}, Maria Paola Madrau¹¹, Maria Lucia Mandola³, Ana Maria Moreno Martin⁶, Simone Peletto³, Silvia Pirani¹² , Serena Robetto³, Claudia Torresi¹², Maria Varotto¹, Carlo Citterio¹ and Calogero Terregino¹

¹Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy; ²Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy; ³Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Quart, Italy;

⁴National Reference Center Wildlife Diseases, Aosta Valley, Quart, Italy; ⁵Istituto Zooprofilattico Sperimentale di Abruzzo e Molise, Teramo, Italy; ⁶Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy;

⁷Department of Veterinary Sciences, Centro Animali Non Convenzionali (C.A.N.C), University of Turin, Turin, Italy;

⁸Istituto Zooprofilattico Sperimentale di Lazio e Toscana, Roma, Italy; ⁹Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy; ¹⁰Molecular Medicine PhD Program, Department of Medicine and Surgery, University of Parma, Parma, Italy; ¹¹Istituto Zooprofilattico Sperimentale della Sardegna, Cagliari, Italy and ¹²Istituto Zooprofilattico Sperimentale di Umbria e Marche, Perugia, Italy

HEALTH AND MEDICINE

Swine coronavirus shows potential to spread to humans

Lab tests at UNC-Chapel Hill Gillings School of Global Public Health demonstrate swine coronavirus replicates in human airway and intestinal cells.

Clinical Infectious Diseases
MAJOR ARTICLE

IDSA
Infectious Diseases Society of America

hivma
hiv medicine association

OXFORD

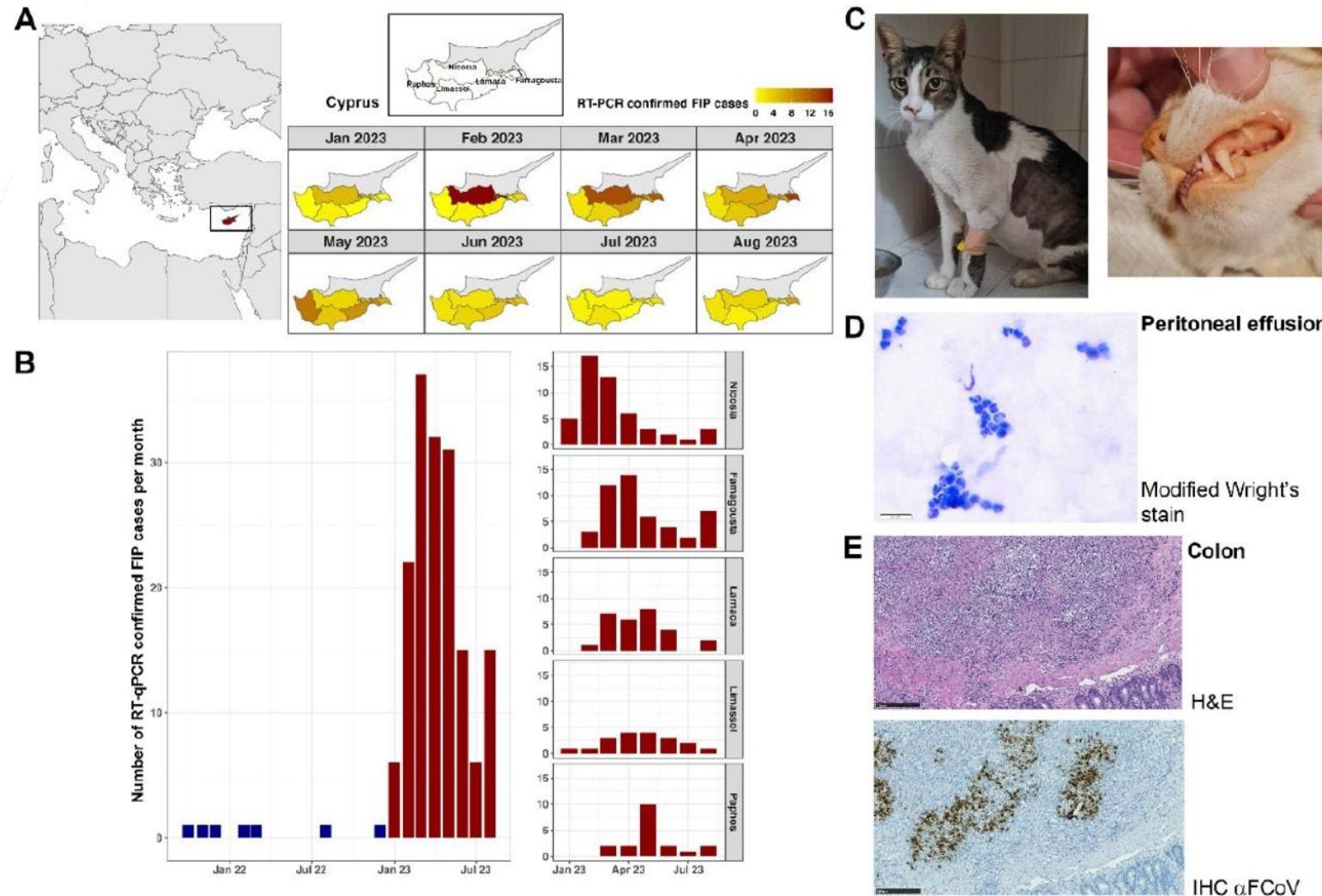
Novel Canine Coronavirus Isolated from a Hospitalized Patient With Pneumonia in East Malaysia

Anastasia N. Vlasova,^{1,a} Annika Diaz,^{1,a} Debasu Damtie,^{2,3} Leshan Xiu,^{4,5,6,✉} Teck-Hock Toh,^{7,8} Jeffrey Soon-Yit Lee,^{7,8} Linda J. Saif,¹ and Gregory C. Gray^{4,5,9,10}

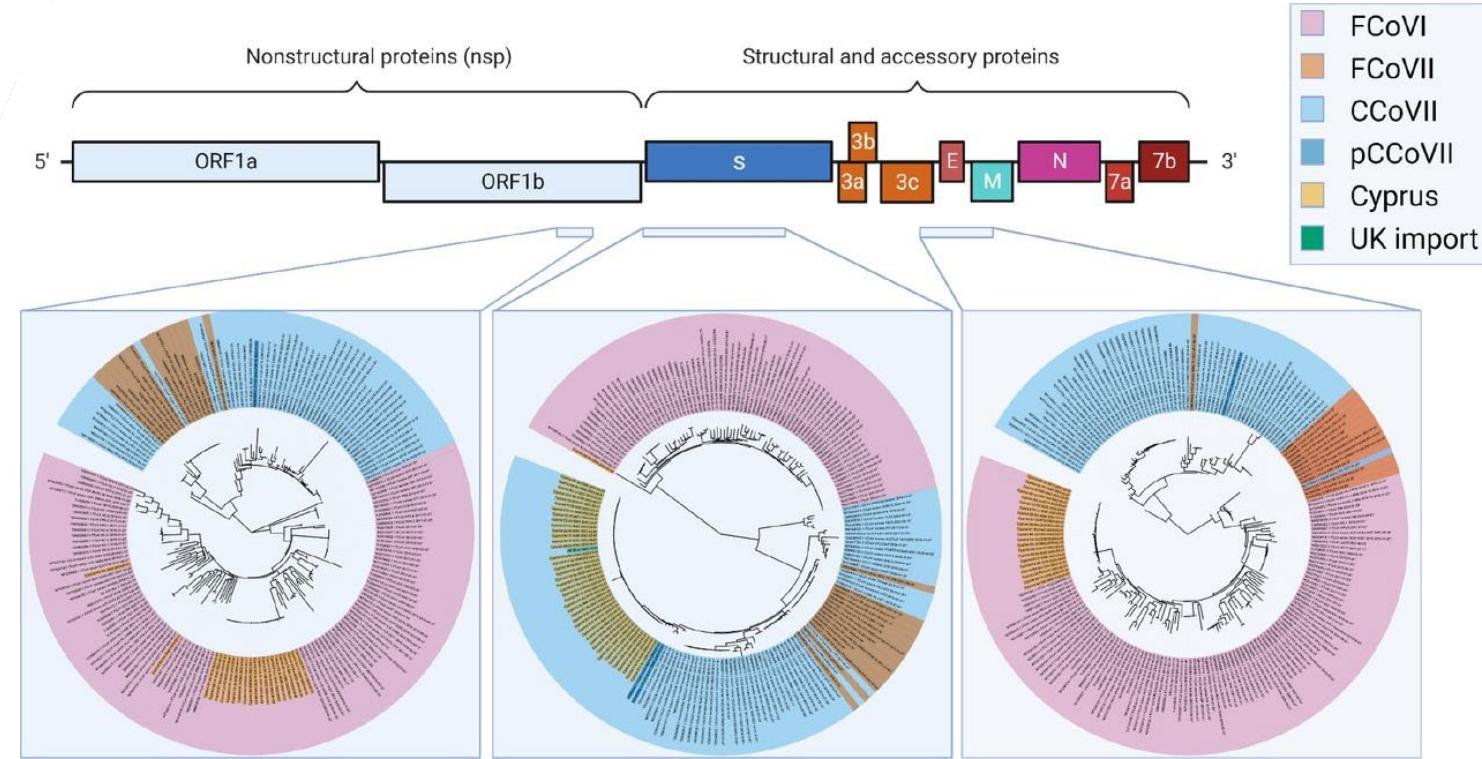
¹Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio, USA; ²Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia; ³The Ohio State University Global One Health LLC, Eastern Africa Regional Office, Addis Ababa, Ethiopia; ⁴Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA; ⁵Duke Global Health Institute, Duke University, Durham, North Carolina, USA; ⁶NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; ⁷Clinical Research Center, Sibu Hospital, Ministry of Health Malaysia, Sibu, Sarawak, Malaysia; ⁸Faculty of Medicine, SEGi University, Kota Damansara, Selangor, Malaysia; ⁹Global Health Research Center, Duke Kunshan University, Kunshan, China; and ¹⁰Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore

Article

Independent infections of porcine deltacoronavirus among Haitian children


<https://doi.org/10.1038/s41586-021-04111-z>

Received: 8 March 2021


Accepted: 7 October 2021

Published online: 17 November 2021

John A. Lednicky^{1,2,✉}, Massimiliano S. Tagliamonte^{1,3,7}, Sarah K. White^{1,2}, Maha A. Elbadry^{1,2}, Md. Mahbubul Alam^{1,2}, Caroline J. Stephenson^{1,2}, Tania S. Bonny^{1,2}, Julia C. Loeb^{1,2}, Taina Telisma⁴, Sonese Chavannes⁴, David A. Ostrov^{1,3}, Carla Mavian^{1,3}, Valery Madsen Beau De Rochars^{1,5}, Marco Salemi^{1,3,✉} & J. Glenn Morris Jr^{1,6,✉}

A novel recombinant canine/feline alphacoronavirus

Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals

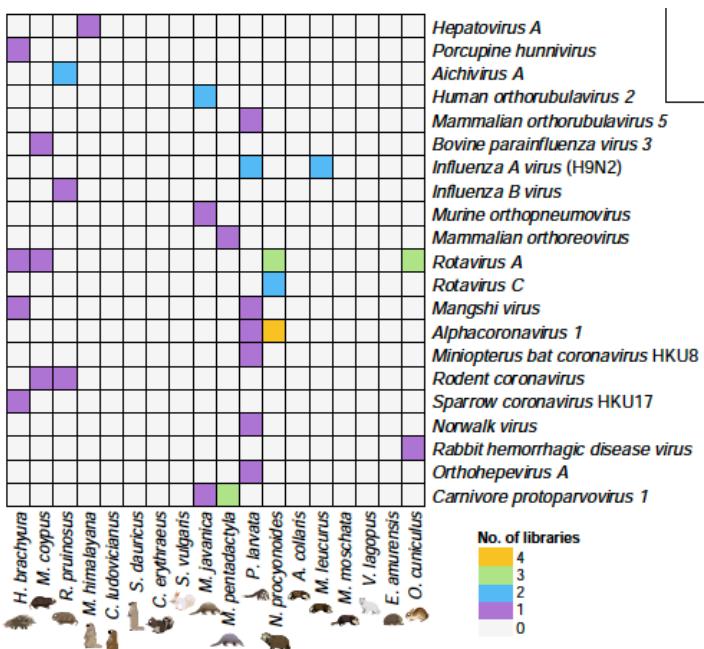
Received: 27 February 2023

Accepted: 20 April 2023

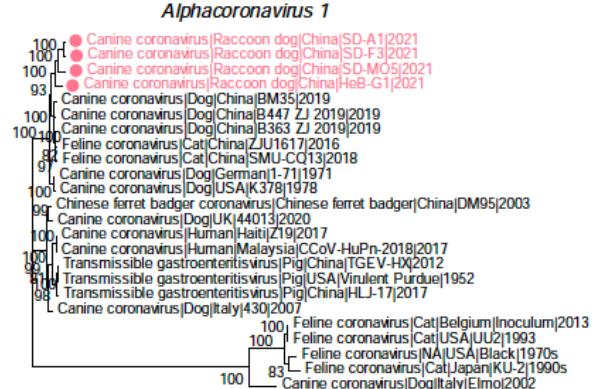
Published online: 29 April 2023

 Check for updates

Xinyuan Cui^{1,20}, Kewei Fan^{10,20}, Xianghui Liang^{1,20}, Wenjie Gong^{3,4,20},
Wu Chen¹⁰, Biao He^{4,20}, Xiaoyuan Chen¹, Hai Wang¹, Xiao Wang¹, Ping Zhang¹,
Xingbang Lu¹, Rujian Chen¹, Kaixiong Lin^{10,6}, Jiameng Liu¹, Junqiong Zhai⁵,
Ding Xiang Liu^{7,8}, Fen Shan⁵, Yuqi Li¹⁰, Rui Ai Chen⁸, Huifang Meng¹,
Xiaobing Li^{1,2}, Shijiang Mi^{3,4}, Jianfeng Jiang^{3,4}, Niu Zhou¹⁰, Zujin Chen⁵,
Jie-Jian Zou⁹, Deyan Ge¹⁰, Qisen Yang¹⁰, Kai He¹¹, Tengteng Chen¹⁰,
Ya-Jiang Wu⁵, Haoran Lu^{10,12}, David M. Irwin^{10,13,14}, Xuejuan Shen¹, Yuanjia Hu¹,
Xiaoman Lu¹, Chan Ding^{15,16}, Yi Guan^{17,18}, Changchun Tu^{10,4,16} &
Yongyi Shen^{10,19}



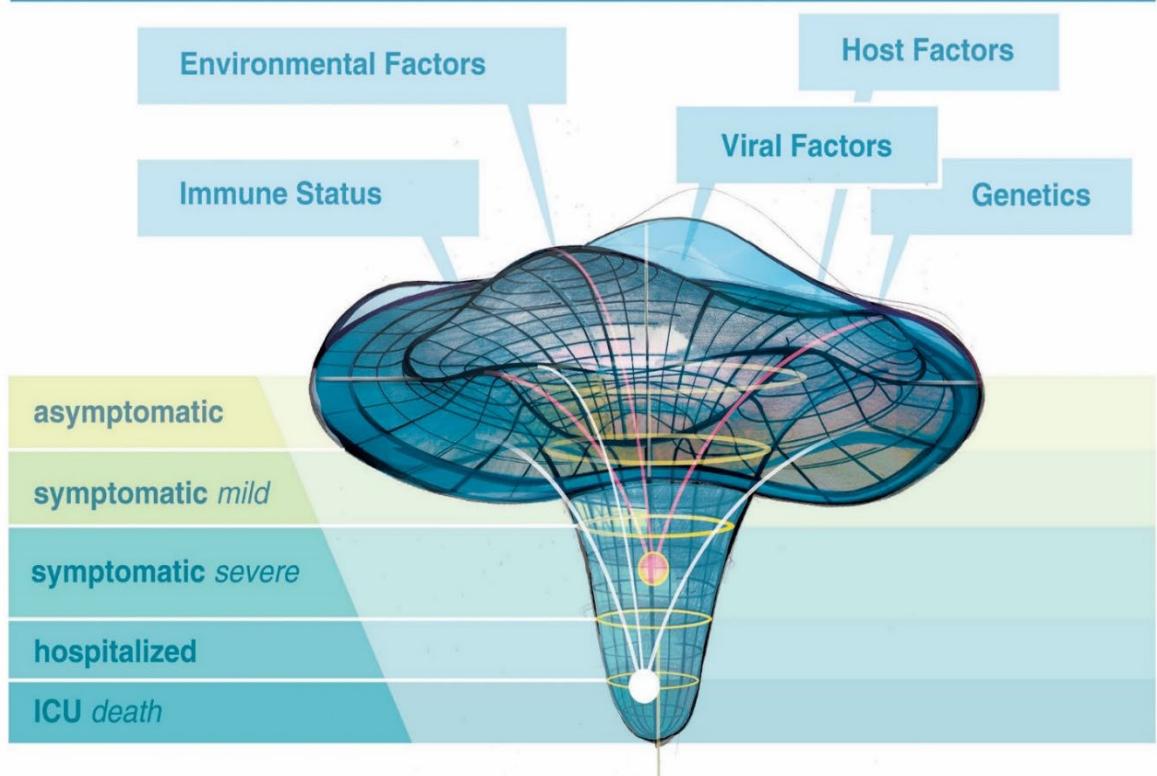
Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of *Bornaviridae*. In addition to the reported SARS-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.

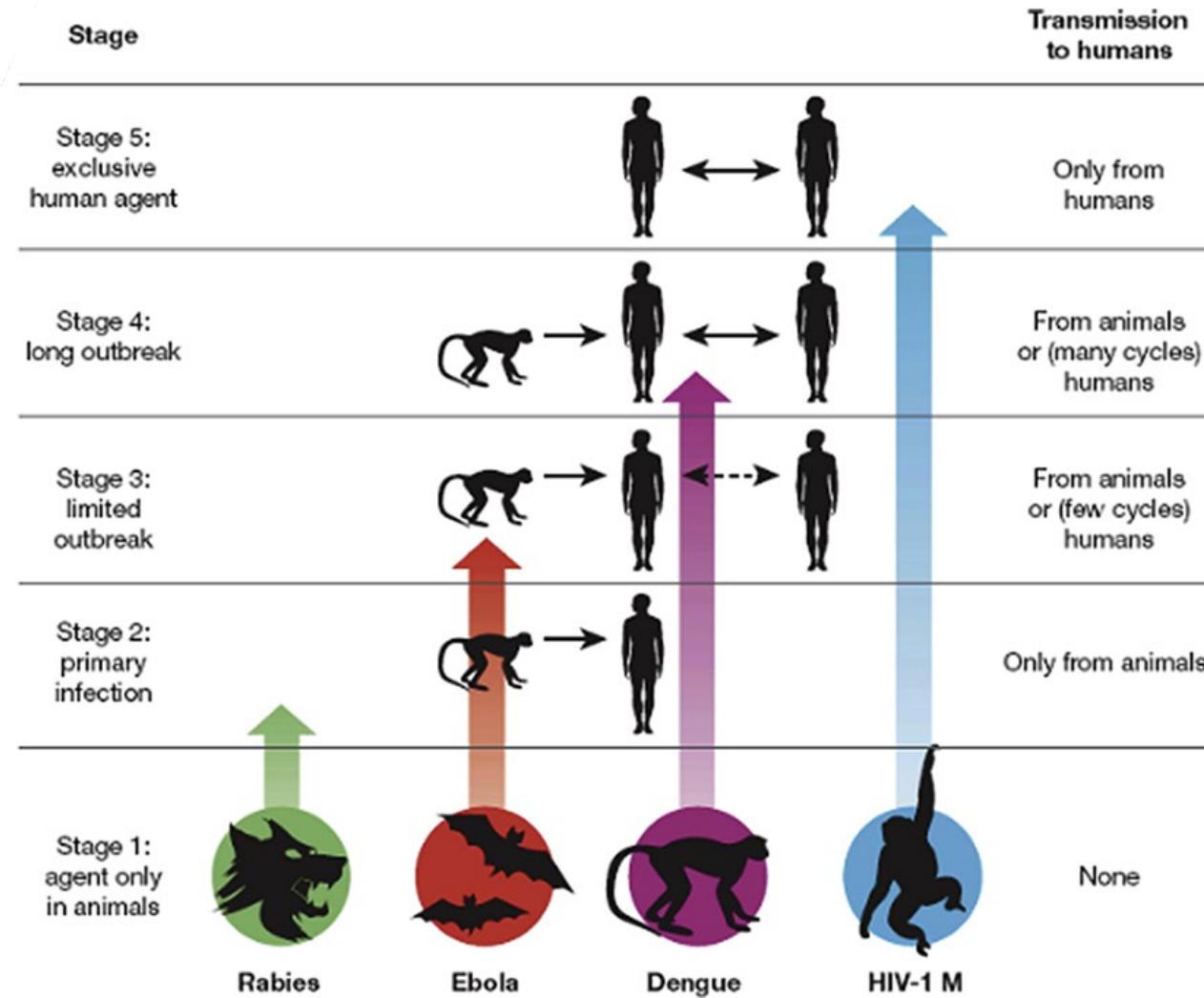

Viromes of Game Animals in China

- Sampled 1941 game animals from 5 mammalian orders
- 102 mammalian viruses discovered: 21 of potential human risk
- Bat HKU8 coronavirus in a civet
- Avian H9N2 influenza virus in a civet and an Asian badger

Canine α -CoV in a raccoon dog (gastric)

Goals of Our Animal-Human Interface (and human) Studies

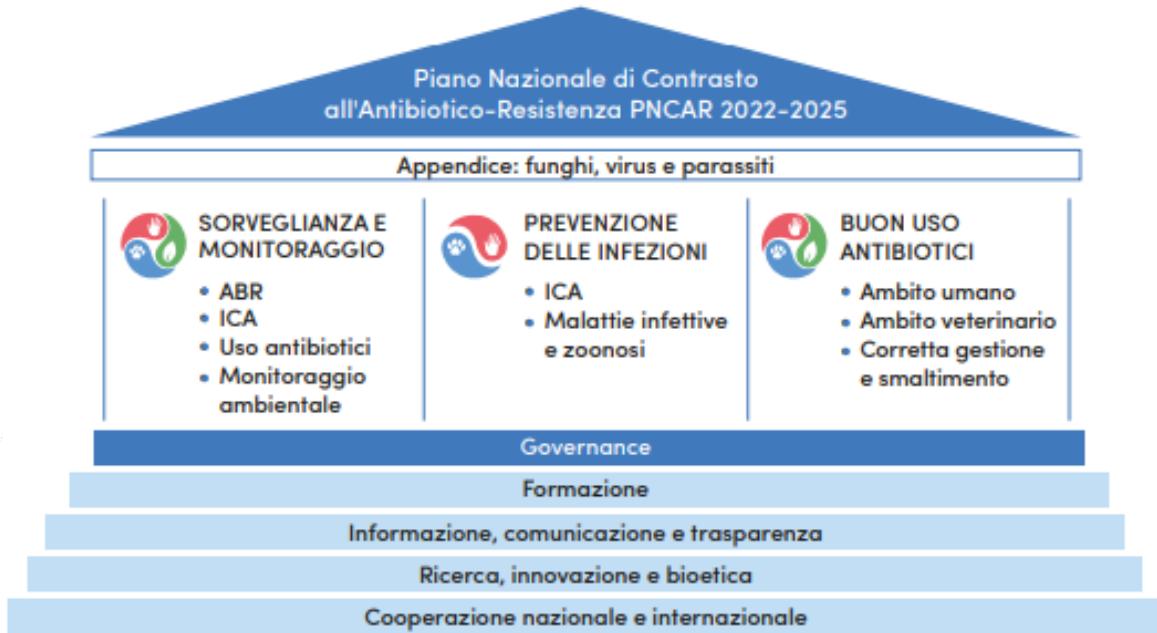

What viruses present a zoonotic risk?


What host factors (biological, behavioral, environmental) increase the risk of zoonotic transmission?

Immunological and other host factor associations with clinical disease

What factors determine poor clinical outcomes? Can these outcomes be predicted? Prevented? Treated?

Burden of Disease



Ministero della Salute

Direzione Generale della Prevenzione Sanitaria

Piano Nazionale della Prevenzione 2020-2025

IZS

TERAMO

/

ISTITUTO
ZOOPOFILATTICO
SPERIMENTALE
DELL'ABRUZZO
E DEL MOLISE
"G. CAPORALE"

NGS: Next Generation Sequencing..Next Generation Strategies!

OPEN ACCESS PEER-REVIEWED

RESEARCH ARTICLE

Identifying and prioritizing potential human-infecting viruses from their genome sequences

Nardus Mollentze , Simon A. Babayan, Daniel G. Streicker


Published: September 28, 2021 • <https://doi.org/10.1371/journal.pbio.3001390>

*« Determining which animal viruses may be capable of infecting humans is currently intractable at the time of their discovery, precluding prioritization of high-risk viruses for early investigation and outbreak preparedness. Given the **increasing use of genomics** in virus discovery and the otherwise sparse knowledge of the biology of newly discovered viruses, we developed **machine learning models** that identify candidate **zoonoses** solely using signatures of host range encoded in viral genomes»*

- **Training**
- **Develop a novel generation of scientists**
- **Core of the pandemic preparedness**

Bushmeat and animal trade

FONTE: Bozza decreto sulla governance del 'Piano Mattei'

GEA - WITHUB

IZS

TERAMO

/

ISTITUTO
ZOOPROFILATTICO
SPERIMENTALE
DELL'ABRUZZO
E DEL MOLISE
"G. CAPORALE"

Thank you