

PPR diagnostic support from FAO/WOAH Reference Centre to countries in Central Asia

William G. Dundon

Joint FAO-IAEA Centre International Atomic Energy Agency, Vienna, Austria

FAO/IAEA Joint Center

The Animal Production and Health Laboratory (APHL) assists Member States to improve livestock productivity through the efficient use of locally available feed resources, adequate management practices and breeding programmes for indigenous and upgraded animals, and diagnostic tools and prophylactic measures for the control and prevention of animal and zoonotic diseases.

The Animal Production and Health Laboratory (APHL) is a WOAH Collaborating Centre for ELISA and Molecular Techniques in Animal Disease Diagnosis

APHL ACTIVITIES on PPR

Research and Innovation (molecular techniques)

- Molecular and serological assays;
- Genome Sequencing
- Molecular epidemiological studies


Virus Biobank – BLS3 facility (AGES- Mödling)

Capacity building and technology transfer (Through specific mechanisms)

- TCPs
- CRPs
- On-site training
- Fellowship training
- Group trainings

Services

Service (ring trials, shipment)

Training courses in collaboration with the PPR-Secretariat

Jordan 2023

Experts/Consumables

Title	Year	Venue
Diagnosis of PPR and Respiratory Diseases of Small Ruminants	2023	Georgia
Detection and differential diagnosis of PPR in Small Ruminants	2023	Tanzania
PPR Laboratory Diagnosis Workshop	2023	Jordan
Laboratory Diagnosis of PPR in Wildlife	2024	On-line
Laboratory training methods for Peste de Petits Ruminant (PPR) Diagnosis	2024	Nigeria

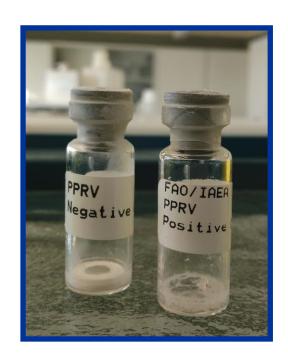
Georgia 2023

Nigeria 2024

Trainings on PPR

Topics covered

- Peste de Petits Ruminants Laboratory diagnosis
- Rapid field detection (Dip-stick)
- Antigen capture
- cELISA (ID-Vet, AU-PANVAC)
- Multi-target approach for PPRV detection
- Multiplex Respiratory pathogens detection (differential diagnosis)
- Molecular characterization and epidemiology of PPRV



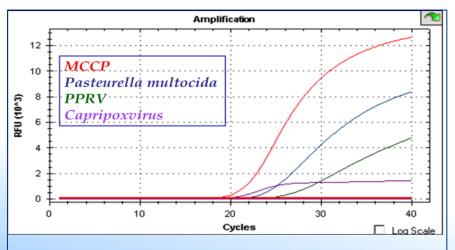
Harmonizing approach to PPR and small respiratory diseases

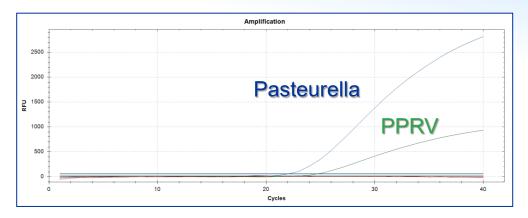
laboratory diagnoses

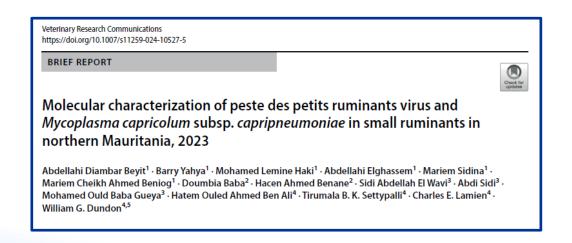
- Distribution of laboratory SOPs from international reference laboratories or from the Animal Production and Health Laboratory (CJN, FAO/IAEA)
- Distribution of positive PPRV RNA controls upon request
- Inter-laboratory comparison test for PPRV (Serology and Molecular)

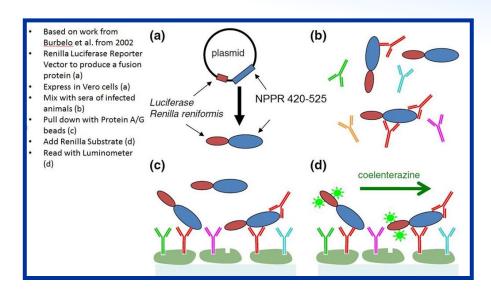
Country
Guinea
Uzbekistan
Georgia
Malawi
Rwanda
Zimbabwe
India
Pakistan
Nigeria
Algeria
Azerbaijan
Morocco Meknes
Morocco Marrakech
Bangladesh
Botswana
Burkina Faso I
Armenia
France (CIRAD)
Chad
Côte d'Ivoire
DRC
Eswatini
Ethiopia (AHI)
Ethiopia
Ghana
Indonesia (Harimurti)
Tanzania (Arusha)
Kenya
Lao P.D.R.
Lesotho
Malaysia I
Mali
Mongolia
Morocco (Rabat)

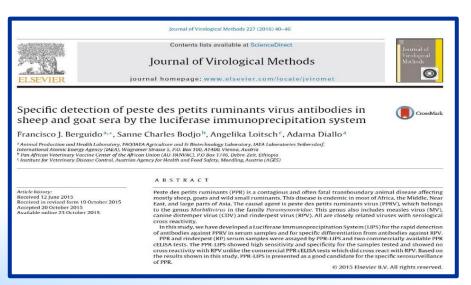
Country Mozambique Myanmar (Yangon) Myanmar (Mandalay) Namibia Nepal Niger Senegal Sri Lanka Thailand (NIAH) Tunisia Tanzania Viet Nam Zambia Austria UK Cameroon Garoua Cameroon Douala Cameroon Yaounde Cameroon Bafoussam Burkina Faso II Malaysia II Morocco Casablanca Morocco (Tangier) Bhutan Egypt Bangladesh II


Interlaboratory Comparison Test - 2024




APHL R&D ACTIVITIES ON PPR: Differential diagnosis

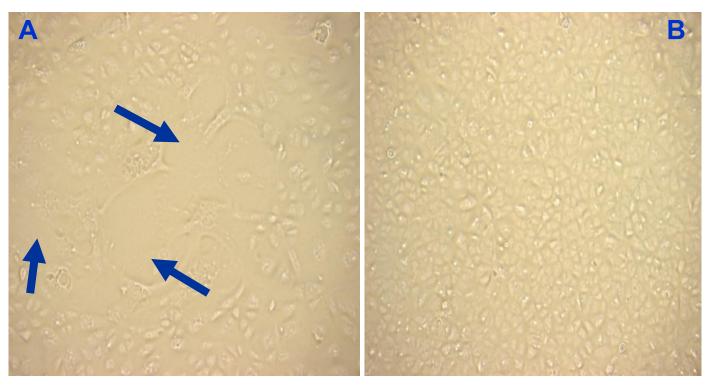




Detection of co-infection in swab sample collected from a goat in Burkina Faso

Luciferase Immuno Percipitation System (LIPS)

- Validated using field and experimental sera
- Can be used for multiple species
- LIPS is as sensitive cELISA
- Uses 1µl per reaction (useful for wildlife screening)


APHL R&D ACTIVITIES ON PPR: viral isolation

APHL developed and distributed CV1 Cell line expressing sheep SLAM to facilitated viral isolation

Monkey CV1 cell line expressing the sheep–goat SLAM protein: A highly sensitive cell line for the isolation of peste des petits ruminants virus from pathological specimens

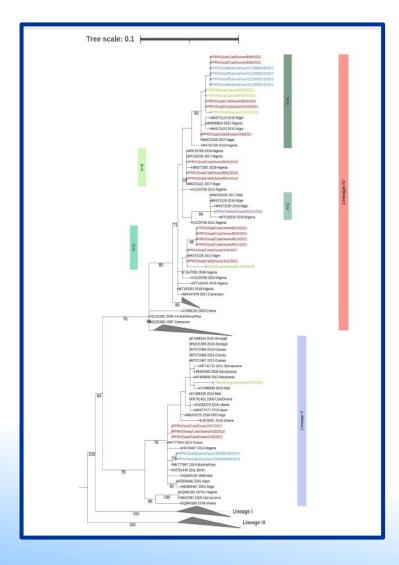
Caroline Mélanie Adombi^a, Mamadou Lelenta^a, Charles Euloge Lamien^a, David Shamaki^b, Yao Mathurin Koffi^c, Abdallah Traoré^d, Roland Silber^e, Emmanuel Couacy-Hymann^c, Sanne Charles Bodjo^a, Joseph A. Djaman^f, Antony George Luckins^a, Adama Diallo^{a,*}

Cell lines for the improved isolation of PPRV from diagnostic samples

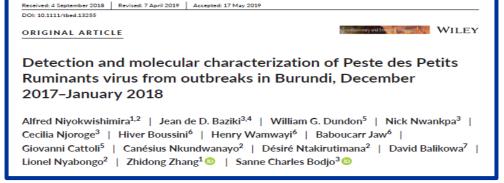
Table 2
Results of the PPRV isolation trial on cell culture from the pathological specimens that were tested PPRV positive by classical and quantitative RT-PCR, CHS-20, CV1 and Vero were used in this trial.

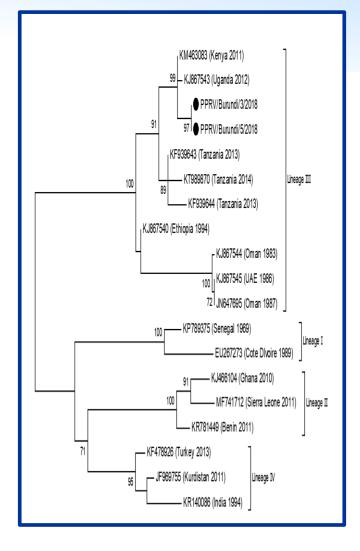
Tissue	Sample ID	PPRV RT-PCR result on tissue sample	Virus isolation ^a			Detection of PPRV in cell culture supernatant (RT-PCR)		
	-	CHS-20	CV1 ^b	Verob	CHS-20	CV1	Vero	
	NIG/08-03	+	3 days	N	N	+	_	_
	NIG/08-17	+	8 days	N	N	+	_	_
	NIG/08-27	+	2 days	N	N	+	_	_
Lung	NIG/08-43	+	2 days	N	N	+	+	+
	CIV/09-OVP	+	N	N	N	_	_	_
	CIV/09-01P	+	1 day	N	N	+	+	_c
	CIV/09-02P	+	2 days	N	N	+	_	_
	NIG/08-04	+d	N	N	N	_	_	_
	NIG/08-10	+d	7 days	N	N	+	_	_
Lymph node	NIG/08-30	+	3 days	N	N	+	_	_
zympii nout	CIV/09-OVG	+	N	N	N	_	_	_
	CIV/09-01G	+	2 days	N	N	+	_c	_
	NIG/08-20	+	N	N	N	_	_	_
	NIG/08-28	+	5 days	N	N	+	_	_
	NIG/08-44	+	8 days	N	N	+	_	_
Liver	CIV/09-OVF	+	N	N	N	_	_	_
	CIV/09-01F	+	N	N	N	_	_	_
	CIV/09-02F	+	4 days	N	N	+	_	_
Spleen	NIG/08-11	+d	10 days	N	N	+	_	_
	NIG/08-18	+	10 days	N	N	+	_	_
	NIG/08-22	+	8 days	N	N	+	_	_
	NIG/08-29	+	7 days	N	N	+	_	_
	CIV/09-OVR	+	N	N	N	_	_	_
	CIV/09-01R	+	N	N	N	_	_	_
	CIV/09-02R	+	N	N	N	_	_	_
Kidney	CIV/09-02N	+	N	N	N	_	_	_

N = no CPE, Samples in bold were used in the RT-PCR shown in Fig. 3.

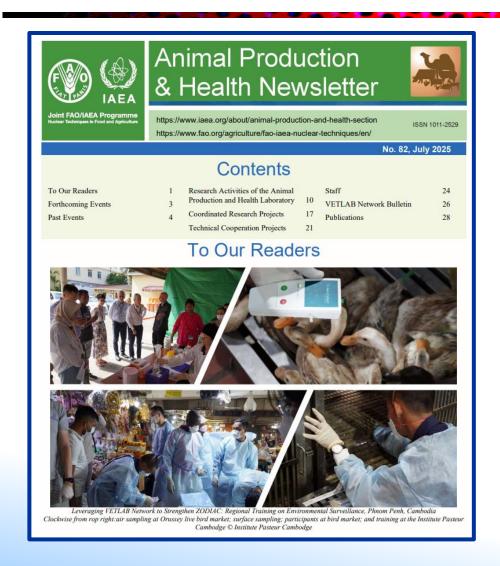

^a Day post infection (dpi) on which the CPE was detected in the cell monolayer,

b Up to 4 blind passages were performed,


c Positive for the RNAs that were extracted from the cells at the time of the first blind passage.


d Positive in real time PCR only.

Support on the molecular epidemiology of PPRV


Support on the molecular epidemiology of PPRV - Publications

Year	Country	Publication
2014	Ghana	Dundon et al (2014) Virus Genes 49:497-501
2015	Kenya	Dundon et al (2017) Transboundary and Emerging Diseases 64:644-650
2015	Nigeria	Woma et al (2016) Transboundary and Emerging Diseases 63 :235-42
2016	Benin	Adombi et al (2017) Transboundary and Emerging Diseases 64:1037-1044
2016	Liberia	Boussini et al (2016) Tropical Animal Health and Production 48:1503-7.
2017	Mongolia	Shatar et al (2017) Archive of Virology 162:3157-3160
2018	Georgia	Donduashvili et al (2018) Emerging Infectious Diseases 24:1576-1578
2019	Burundi	Niyokwishimira et al (2019) Transboundary and Emerging Diseases 66:2067-2073
2019	Nepal	Pandey et al (2019) Virusdisease. 30:315-318
2019	Ethiopia	Rume et al (2019) Veterinary Microbiology 235:229-233
2019	DR Congo	Tshilenge et al (2019) Veterinary Microbiology
2019	Niger	Souley et al (2019) Transboundary and Emerging Diseases
2022	Ghana, Burkina Faso, Cote D'Ivoire, Guinea	Couacy et al (2023) Animals
2024	Mauritania	Beyit et al (2024) Vet Res Commun

Support to the molecular characterization of PPRV - Genomes

Year	Lineage	Country	GenBank
1969	I .	West Africa	KP789375
1969	II .	Benin	KR781450
2008	IV	Bangladesh	MG581412
2009	II .	Côte d'Ivoire	KR781451
2010	II	Ghana	KJ466104
2011	II .	Benin	KR781449
2011	II	Sierra Leone	MF741712
2011	III	Kenya	KM463083
2011	IV	Ethiopia	MK991798
2012	II .	Nigeria	KR828814
2013	IV	Nigeria	KR828813
2014	IV	Ethiopia	MK991799
2015	II .	Liberia	KU236379
2016	IV	Mongolia	KY888168
2017	III	Burundi	MK686066
2017	IV	Ethiopia	MK991800
2021	IV	Bhutan	N/A
2022	IV	Côte d'Ivoire	N/A
2022	IV	Nigeria	N/A
2022	IV	Ghana	N/A
2022	IV	Tunisia	N/A
2023	IV	Mauritania	OR500606
2024	IV	Nepal	PV167795

More information of Animal Production and Health

https://www.iaea.org/publications/15956/animal-production-and-health-newsletter-no-82-june-2025

FAO/IAEA Agriculture and Biotechnology Laboratory

Joint FAO/IAEA Centre

Nuclear Techniques in Food and Agriculture

Animal Production and Health Sub-programme

