

EFSA RISK ASSESSMENT ON HIGHLY PATHOGENIC AVIAN INFLUENZA:
LAST OUTPUTS

Alessandro Broglia

EFSA

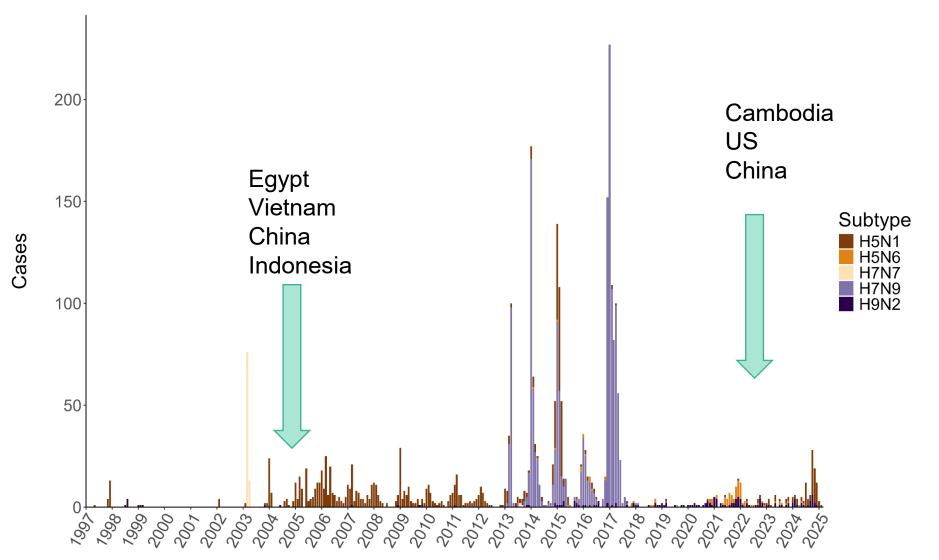
Biological Hazards & Animal Health and Welfare Unit

OUTLINE

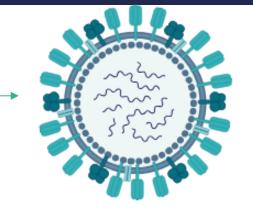
- Contribution to preparedness, prevention, and control related to zoonotic avian influenza
- Cattle infections in US and possible pathways of HPAI introduction into EU
- Wild bird surveillance for early detection

➤ Mutations for mammals and human adaptation of AIV

➤ Surveillance, prevention and control



REPORTED HUMAN CASES OF AVIAN INFLUENZA 1997 – 13 FEB 2025


- A(H7N9)
- A(H5N1)
- A(H9N2)

^{*}Human cases of A(H5) epidemiologically linked to A(H5N1) outbreaks in poultry and dairy cattle are included in the reported number of cases of A(H5N1).

^{**}Includes detections of A(H5N1) due to suspected environmental contamination reported in 2022 (three detections) and 2023 (three detections, one inconclusive).

ANALYSIS OF AIV MUTATIONS TOWARDS ZOONOTIC AI

Avian influenza virus preferences

BINDING: AIV HAs bind a2-3-linked SA

pH STABILITY: Limited acid stability of the AIV HAs

Temperature: AIV polymerases more active at high temperatures (i.e. 37 and 42 °C)

Avian host **Human host** Both α-2,3 and α-2,6 receptors Upper respiratory tract present in the respiratory and intestinal tracts α-2,6 predominant Acid pH α-2,3 predominant Temperature: 32°C Temperature: 41 °C Lower respiratory tract Neutral pH α-2,6 and α-2,3 Temperature: 37°C

ANALYSIS OF AIV MUTATIONS TOWARDS ZOONOTIC AI

- Output: 34 mutations linked with 5 relevant phenotypic traits for virus zoonotic potential
- <u>Sporadic viruses identified with multiple mutations</u> >>> combination of traits only in 144 viruses (over 27k sequences analysed), mostly in **H9N2** subtype from Asia and Africa (2012 2023), others are A(H7N9), A(H3N8), A(H5N6)
 - In EU/EEA, 2021-2024, <u>H5Nx 2.3.4.4b</u> acquired highest number zoonotic traits, mainly due to wide spread;
 - Accumulation of multiple phenotypic traits leads to significantly increased zoonotic potential in a single host, but uncommon and gradual process

MUTATION ANALYSIS - RECOMMENDATIONS

- To invest in bioinformatics tools: characterisation of emerging viruses, on new mutations and traits and their combination >>
- <u>To ensure comparability of studies:</u> harmonisation in experimental characterisation studies
- To use Whole Genome Sequencing approaches (rather than partial sequences)
- comprehensive metadata collection needed (besides sequence data)
- List of mutations of zoonotic traits to be continuously updated: new studies >> new mutations

 To develop the framework for assessing pandemic potential beyond the individual mutations

ANIMAL HEALTH SURVEILLANCE

Objective: monitoring and <u>detection of AIV mutations</u> for mammal adaptation mutations

- Risk-based passive surveillance >> Target animals:
 - Mammals with known exposure to AIV infected birds or mammals
 - Mammals found dead in risk areas and periods
 - Mammals with unexplained signs in risk areas and periods
- Sampling all or sub sample of sick or found dead animals per outbreak + WGS
 - tissue from organs linked to clinical signs
 - Repeated sampling and sequencing over time if no culling applied

PREVENTION AND CONTROL MEASURES

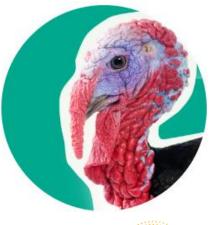
At farm level

- Biosecurity to reduce the risk of HPAI introduction
- Contingency plans for facing outbreaks in new species
- Farm location and type of breeding systems: location close to wetlands, open breeding systems, high density of animals and farms >> risk factors

When detected:

- Isolation of infected animals, (culling), disposal of carcass, products
- Quarantine, movement restriction, contact tracing
- promptly apply control measures (from the outbreak start), to contain the spread

BIOSECURITY CAMPAIGN


Search news, topics,

Home

No bird flu: protect your farm!

https://www.efsa.europa.eu/en/no-bird-flu#resources-to-share

PREVENTION AND CONTROL MEASURES

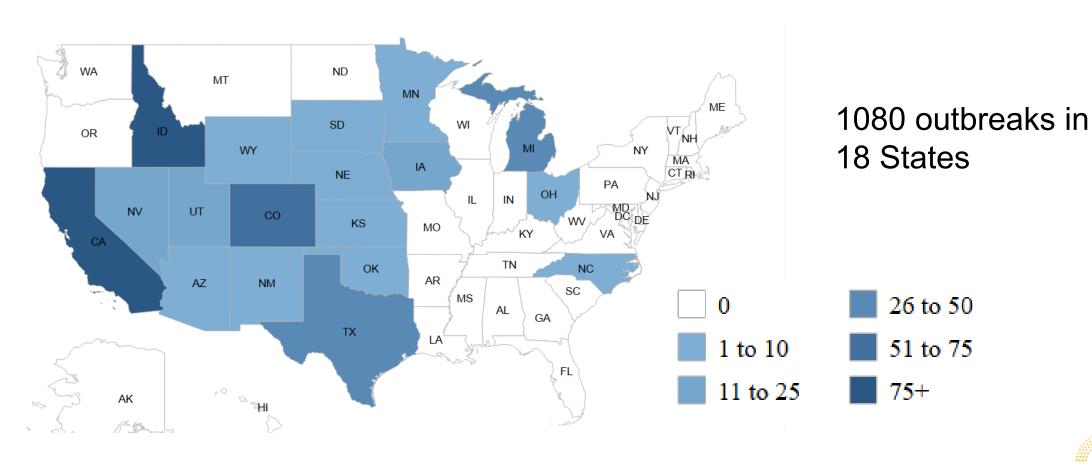
For the general public

Clear communication e.g. on:

- Avoid consumption of raw dairy products from areas with infected dairy cattle
- Companion animals roaming outdoor in infected areas/farms
- Backyard farming: hygiene, protective measures, report of any case or suspicion

Wildlife management

- Biosecurity in handling animals/carcasses
- Removal of carcass and waste disposal
- strengthening wildlife-related stakeholders' network


- Cattle infections in US
- possible pathways of HPAI introduction into EU

OUTBREAK IN US DAIRY CATTLE

Cumulative number of HPAI H5N1 B3.13 reported cases in dairy farms per state in US (25/03/2024 – 15/09/2025)

- affected states >> 58% of U.S. dairy cattle population (tot 5,4 millions head)
- California: total 1,688,202 bovines in 1117 farms

PATHWAY OF HPAI INTRODUCTION INTO EU FROM US

TRADE of animal products:

- Raw or insufficiently treated milk and dairy products uncertainty around the efficacy of non-thermal treatments and product labelling
- Live bovine and bovine meat, but limited virus detection in muscle tissue

Lack of knowledge regarding pathway:

 No reports of investigations of bovine semen, embryos, oocytes or fetal calf serum

Overall: low quantities of these commodities traded from the US to the EU

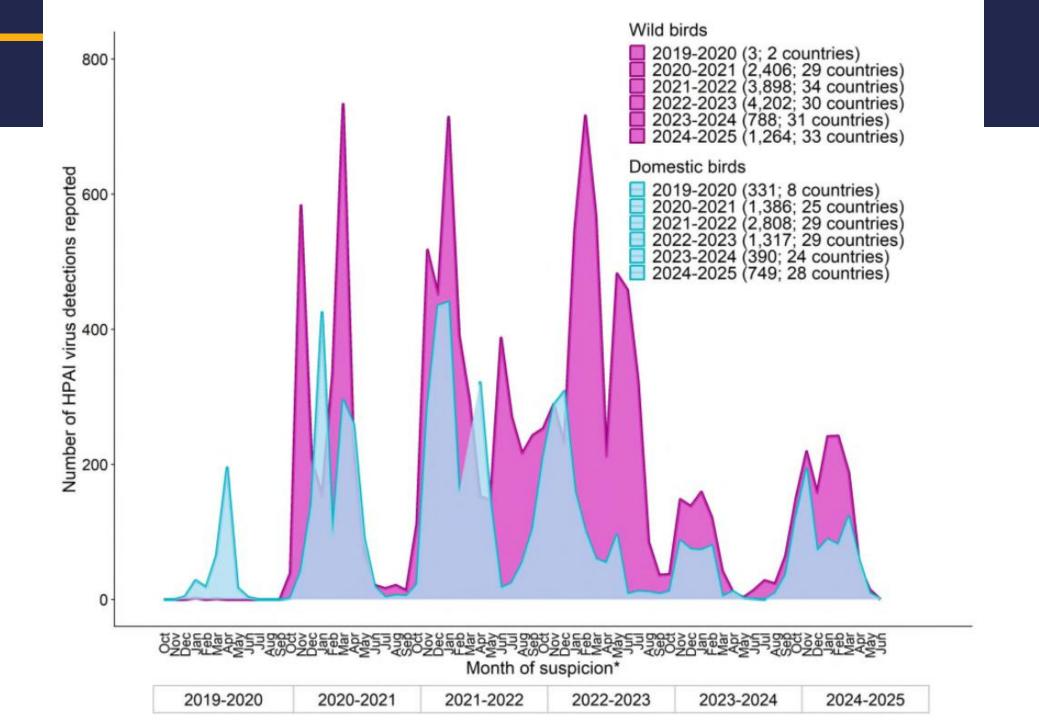
PATHWAY OF HPAI INTRODUCTION INTO EU FROM US

Migratory waterbirds

- migration seasons (April–May) and nonbreeding season (September–April)
- North American Arctic route most likely
- US birds may come into contact with European birds

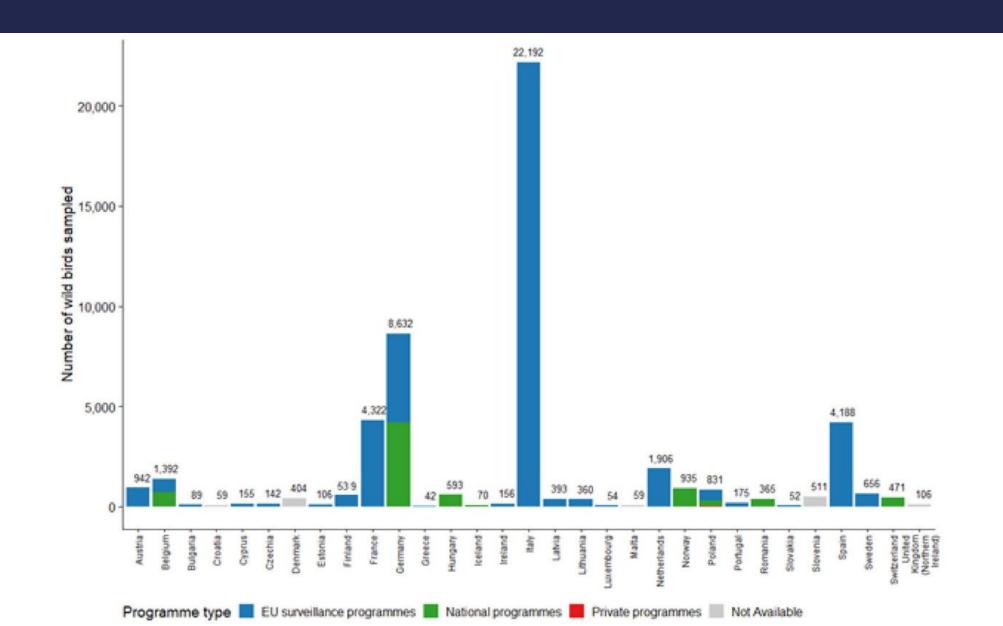
Likely key entry points to EU:

- Iceland, Ireland, western Scandinavia
- large wetlands like the Wadden Sea


yellow arrows = intercontinental transmission via the North American Arctic
 blue arrows = intercontinental transmission via Siberia
 orange arrows = secondary transmission in West or South Africa

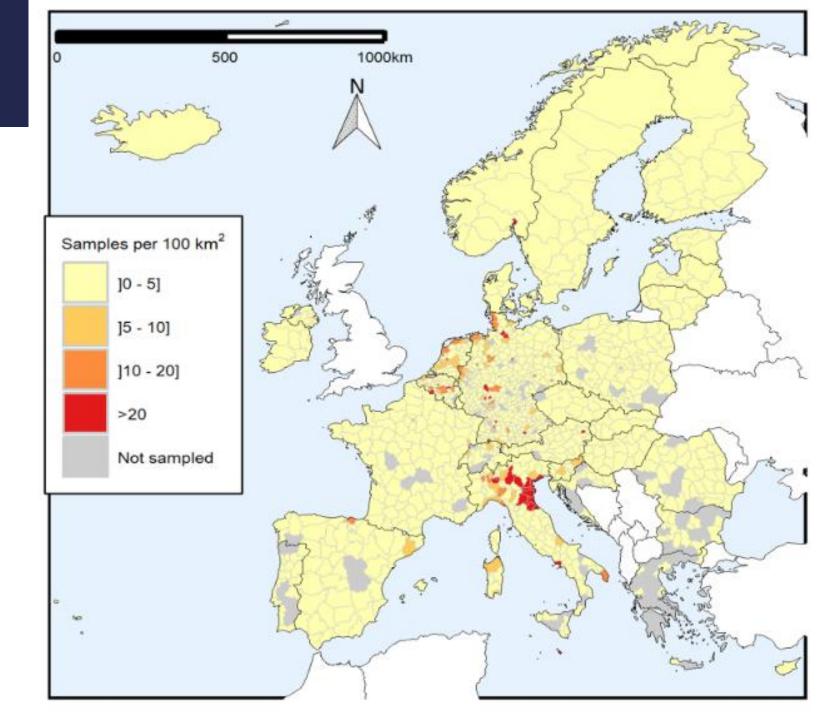
Wild birds surveillance for early detection

AVIAN INFLUENZA ANNUAL REPORT ON SURVEILLANCE IN POULTRY AND WILD BIRDS


Data from 31 EU/EEA countries from previous year (2023)

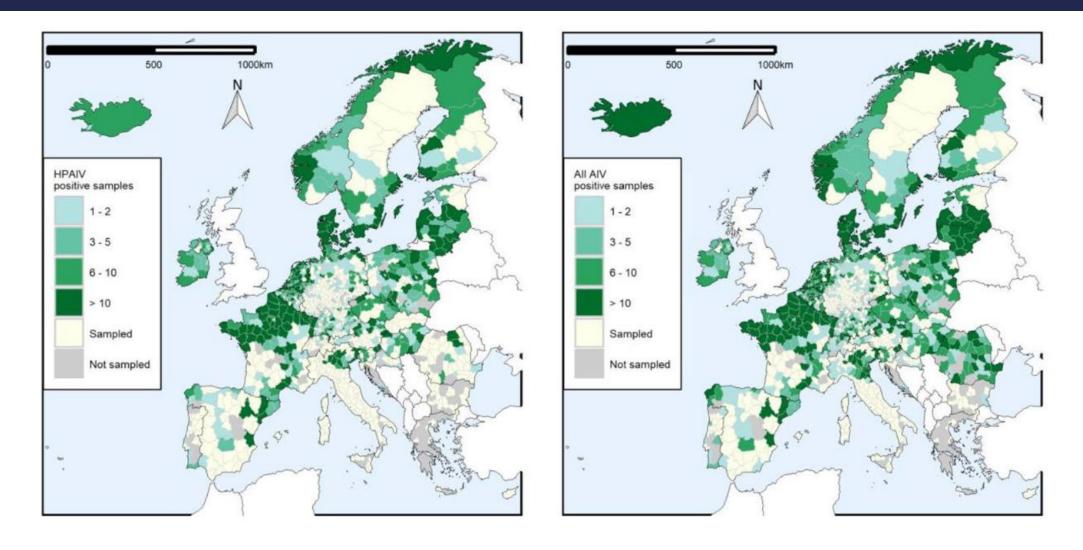
Wild birds: Early detection of AIVs in wild birds through virological surveys on

- Passive surveillance:
 - found dead
 - alive with clinical signs
- Active surveillance:
 - hunted with clinical signs
 - hunted without clinical signs
 - alive without clinical signs



WILD AND CAPTIVE BIRDS SAMPLED

SAMPLING DENSITY

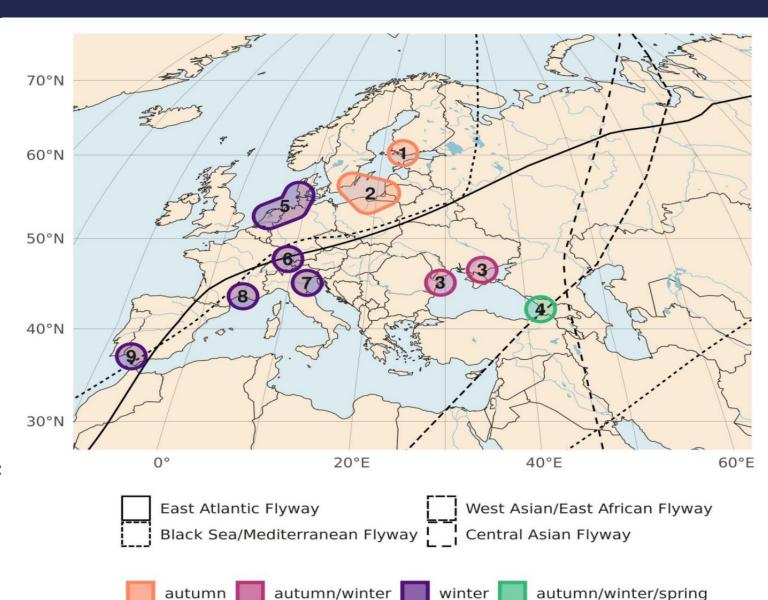

ACTIVE VS. PASSIVE SURVEILLANCE

The choice of surveillance type is according to the virus pathogenicity:

- ✓ LPAI viruses >> active surveillance more effective
- ✓ HPAI >> passive surveillance more effective

	Wild bird status	No. of wild birds sampled	No. of AIV-positive wild birds		
	Bird status		Positive by PCR or VI	HPAIV	LPAIV
Active	Hunted without clinical signs	2041	141 (7%)	11	130
	Live without clinical signs	15,135	330 (2.2%)	49	281
	Subtotal	17,176	471 (2.7%)	60	411
Passive	Found dead	32,756	8010 (24.4%)	6523	1487
	Live with clinical signs	1387	136 (9.8%)	103	33
	Subtotal	34,235	8186 (23.9%)	6657	1529
Total		51,411	8657 (16.8%)	6717	1940

RESULTS



AIV-positive wild birds (left) and HPAIV-positive wild birds (right) by administrative unit

IMPROVING ACTIVE SURVEILLANCE IN WILD BIRDS

- Establishment of a coordinated network of active surveillance nodes across Europe
- Testing the **added value** of active wild bird surveillance to other surveillance efforts
- Increasing the pool of genomic sequences
- > Preparedness and early warning

9 surveillance nodes (geographic locations)

TASKS OF THE NETWORK

- Establishment and maintenance of:
 - infrastructure (e.g. wild bird traps, transport vehicles)
 - capacities (e.g. manpower, laboratory benches, IT systems)
- Participation in the network (e.g. training, annual meetings)
- Harmonised sampling plan and data collection/sharing framework
- Sampling and testing
 - Field work (i.e. trapping/hunting and sampling)
 - > Screening for HPAI viruses by <u>rapid</u> diagnostic methods (e.g. PCR)
 - Whole genome sequencing
- Real-time data collection, collation and submission to the coordination team
- Preparation of a communication plan to keep national authorities involved and/or informed

PUBLICATIONS

- Scientific opinion: Preparedness, prevention and control related to zoonotic avian influenza https://www.efsa.europa.eu/en/efsajournal/pub/9191
- Scientific report: **Risk posed by the HPAI currently circulating in the US** https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2025.9508
- Avian influenza annual report on surveillance https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2025.9197

THANK YOU FOR YOUR ATTENTION!

EFSA topic page on avian flu:

https://www.efsa.europa.eu/en/topics/topic/avian-influenza

