

World Organisation for Animal Health Founded as OIE

Standing Group of Experts on ASF in Europe under the GF-TADs umbrella

24th meeting (SGE ASF-24)

03-04 April 2025

ASF SITUATION from 1st April 2024 to 31st March 2025 [Russia]

Aleksey Igolkin

Head of reference laboratory for ASF FGBI "ARRIAH"

Wild boar surveillance

In the zones of the country considered free until at least the beginning of the period Wild boar found dead

Period considered (for the year before 31 March 2025)	N° wild boar found dead % PCR positive		% seropositive
01.04.2024 - 31.03.2025	31	0	0

Wild boar hunted

Period considered (for the year before 31 March 2025)	N° wild boar hunted	% PCR positive	% seropositive
01.04.2024 - 31.03.2025	3 131	0	0

In the zones of the country already considered affected at the beginning of the period

Wild boar found dead

Period considered (for the year before 31 March 2025)	N° wild boar found dead	% PCR positive	% seropositive	
01.04.2024 - 31.03.2025	242	19,4 (47)	0	
Wild boar hunted				
Period considered (for the year before 31 March 2025)	N° wild boar hunted	% PCR positive	% seropositive	
01.04.2024 - 31.03.2025	19 471	0,12 (23)	0	

Total WB investigation: 22 875 (-29% to earlier period)

Affected 3 hunting farm (70 ASF-positive boars) in Nizhny Novgorod, Voronezh regions and the Republic of Mari El

Domestic pigs surveillance

In the zones of the country considered free until at least the beginning of the period

Period considered (for the year before 31 March 2025)	N° suspicions Commercial farms / backyards	N° confirmed outbreaks Commercial farms / backyards
01.04.2024 - 31.03.2025	2 / 17	0/0
_	_	

Investigation: PCR = 33 635, ELISA = 2 830

In the zones of the country already considered affected at the beginning of the period

Period considered	N° suspicions	N° confirmed outbreaks
(for the year before 31 March 2025)	Commercial farms / backyards	Commercial farms / backyards
01.04.2024 - 31.03.2025	11 / 63	0 / 5

Investigation: PCR = 955 863, ELISA= 205 898

Total laboratory tests: 1 198 226 (+3% to earlier period)

Affected regions : Nizhny Novgorod, Chelyabinsk, Kostroma, Kirov regions and Khanty-Mansiysk Autonomous Okrug

Surveillance of transmission vectors

Ornithodoros, a genus of argasse mites (See Argass mites). About 40 species; distributed mainly in the tropics and subtropics. There are 7 species in the USSR: in Average Asia, Kazakhstan, Crimea, Moldova, on The Caucasus. They live in burrows, nests, and temporary shelters of mammals, birds, and reptiles, feeding on the blood of these animals.

Lit.: Filippova N. A., Argass mites (Argasidae), M., **1966**. (Fauna of the USSR. Arachnids, vol. 4, v. 3).

Geographical distribution of tick sampling sites (365) for entomological research, 2024 - 2025

Literature:

- Adishcheva O.S., Malkhazova S.M., Orlov D.S. 2016. The spread of West Nile fever in Russia. Bulletin of the Moscow University. Series 5. Geography. 4: 48–54.
- Apenkina N.N. 1963. Bloodsucking diptera insects of the Ob River Valley. In: The nature of the floodplain of the Ob River and its economic development. Tomsk: Tomsk University Publishing House: 318-323.
- Bezzubova V.P., Vanstock A.P. 1961. Fauna of blood-sucking mosquitoes of the Novosibirsk region. In: Proceedings of the Novosibirsk Medical Institute and the Novosibirsk Regional Sanitary and Epidemiological Station. Vol. 38. Issues of natural focal diseases of Western Siberia. Novosibirsk: 176-178.
- **Belokur V.M. 1960.** To the fauna of blood-sucking diptera insects of the Nenets Autonomous Okrug and the northern part of the Komi ASSR. Entomological review. 39(2): 404–409.
- Beltyukova K.N., Beybienko I.G., Buyanova O.F., Detinova T.S., Rerberg M.S., Shlenova M.F. 1958. Preliminary data on the development of a system of measures to combat wildebeest in the context of the construction of the Krasnoyarsk hydroelectric power station. Medical parasitology and parasitic diseases. 27(1): 20–26.
- **Biryukov V.P. 1926.** Nature and population of the Shadrinsky district of the Ural region. Shadrinsk: Printing house of Communotrest. 338 pages .
- Bukshtynov V.I. 1966. Fauna and ecology of blood-sucking diptera insects of the south of the Tyumen region. In: Problems of veterinary sanitation: Proceedings of VNIIVS. Vol. 23. Moscow: Rosglavpoligrafprom of the Press Committee under the Council of Ministers of the RSFSR: 309-310.
- Vigorov Yu.L., Nekrasova L.S., Vigorov A.Yu. 2015. About the late summer fauna of blood-sucking mosquitoes in the southeastern corner of the Sverdlovsk region. Fauna of the Urals and Siberia. 1: 12–25.

Federal Law No. 492-FZ of December 30, 2020 ''On Biological Safety in the Russian Federation'': changing the properties and forms of pathogens, as well as the properties and habitats of their vectors

Surveillance of transmission vectors

Taxonomic characteristics of Ixodidae family ticks by subjects of the Russian Federation

NՉ	Regions of Russia	Total number of found ticks	Name of the genus, family at Ixodidae
1	Bryansk region	35	Rhipicephalus, Haemaphysalis, Dermacentor, Ixodes
2	Kaliningrad region	98	Hyalomma, Rhipicephalus, Scapularis, Haemaphysalis, Dermacentor, Ixodes
3	Moscow region	7	Dermacentor, Haemaphysalis, Ixodes
4	Saratov region	17	Hyalomma, Dermacentor, Rhipicephalus, Haemaphysalis, Ixodes, Scapularis
5	Republic of Chuvashia	11	Rhipicephalus, Hyalomma, Dermacentor
6	Ulyanovsk region	11	Rhipicephalus, Dermacentor
7	Pskov region	4	Haemaphysalis, Hyalomma
8	Krasnodarskiy kray	135	Rhipicephalus, Haemaphysalis, Ixodes
9	Republic of Crimea	29	Rhipicephalus, Haemaphysalis, Ixodes
10	Voronezh region	18	Dermacentor, Haemaphysalis
Total			365

Ancestral affiliation:

Ixodes – 58 ticks. (15,9 %);

Haemaphysalis – 168 ticks. (46,2 %);

Rhipicephalus – 43 ticks. (11,9 %);

Rhipicephalus (*subgenus Boophilus*) – 39 ticks. (10,9 %);

Scapularis – 5 ticks. (1,4 %);

Hyalomma – 10 ticks. (2,8 %);

Dermacentor – 38 ticks. (10,5%).

No Ornithodoros genus was found among the identified mites of the Argasidae family

Famaly *Ixodes*, genus *Dermacentor*

Famaly Ixodes, genus Rhipicephalus

5

Conclusion

- The risk of new outbreaks in the RF in 2025 is estimated as moderately. ASF outbreaks may be register in backyard farms with a low level of biosecurity, as well as in the population of wild boars in infected areas;
- An increase in the number of laboratory tests within the framework of ASF surveillance contributes to the early detection of the disease, reducing the risk of spread ASF virus from infected animals and timely elimination of outbreaks.
- Changing climatic conditions in European countries necessitate the study of possible changes in the distribution range of ASF virus transmission vectors, including ticks of the genus Ornithodoros.

Standing Group of Experts on Rabies in Europe under the GF-TADs umbrella