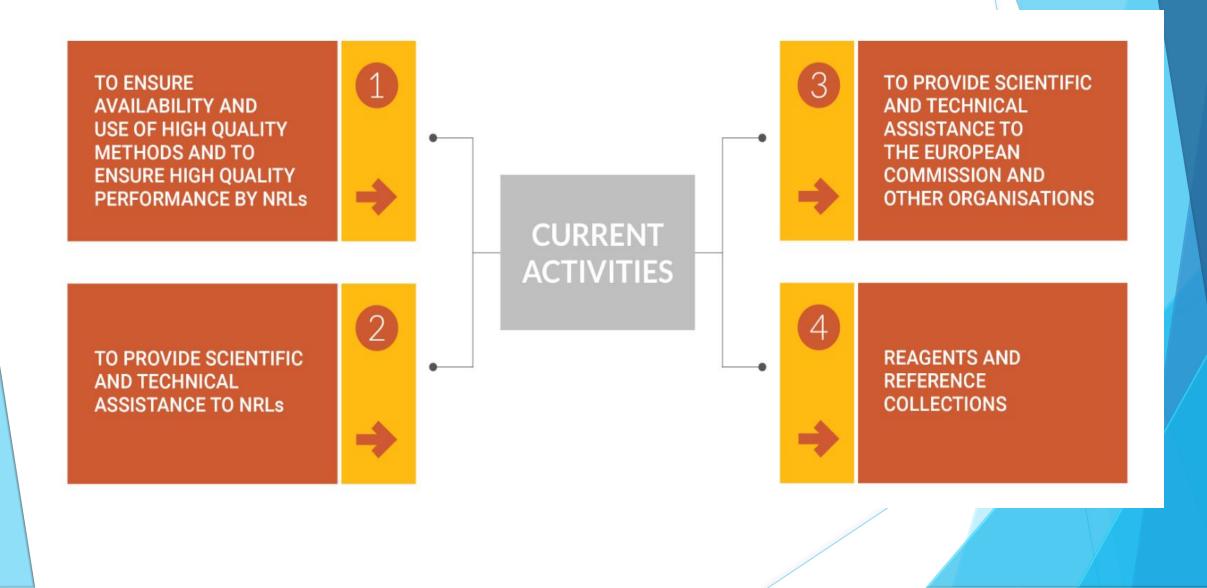


ASF EURL presentation of interlaboratory coordination and support on ASF diagnosis to Western Balkan countries

Carmina Gallardo (gallardo@inia.csic.es)

Laboratory Coordinator EURL


Twenty-third Meeting of the Standing Group of Experts on African swine fever in Europe (SGE ASF23) Transboundary cooperation in African swine fever control 18-19 September 2024 Ohrid, North Macedonia

Centro de investigación en Sanidad Animal (CISA/INIA-CSIC). Madrid, Spain

EUROPEAN UNION REFERENCE LABORATORY FOR AFRICAN SWINE FEVER

TO ENSURE AVAILABILITY AND USE OF HIGH QUALITY METHODS AND TO ENSURE HIGH QUALITY PERFORMANCE BY NRLs

Organization of the **annual Inter-Laboratory comparison test (ILCT)** for ASF.

OBJECTIVE: to harmonise and optimise the serological and virological techniques for ASF used in the national reference laboratories (NRLs) in order to ensure that laboratory tests to detect the presence of ASF are carried out in each Member State and other official laboratories in accordance with EC Directives and Regulations.

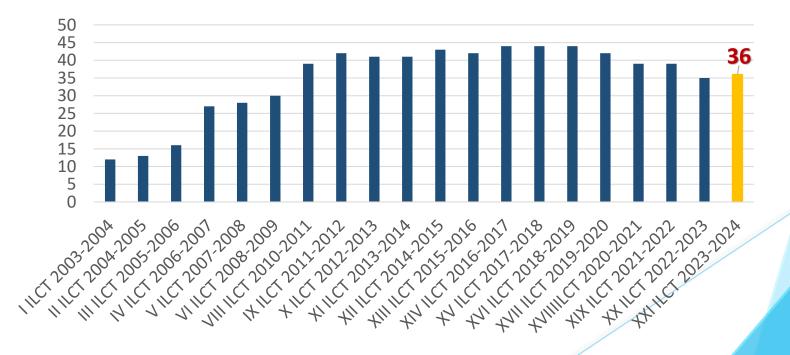
ILCT: What does it consist of?

Selection of a representative sample panel of all epidemiological situations.

ID	CLINICAL	VIRULENCE ASFV	ASFV ISOLATE	GENOTYPE	224	ORIGIN OF SAMPLES
SAMPLE	FORM	VIROLENCE ASPV	ASPVISOLATE	GENOTIFE	DPI (days post infection)	DESCRIPTION
S1			1	Naive p	ig (ASF ı	negative)
S2	ACUTE	VIRULENT	LT14/1492	ш	D18	Pig kept in contact with pigs i.m. inoculated with 10 HAU/ml Lithuanian ASFV isolate LT14/1492. Serum obtained at 18 dpi.
S 3	ACUTE	VIRULENT	Ken06.Bus	х	D12	Dilution 1/8 in negative serum of 1x Kenyan ASFV isolate Ken06.Bus i.m (10 HAU/ml) Serum obtained at 12dpi.
S4	CHRONIC	ATTENUATED	NH/P68	I	D97	1x Portuguese ASFV isolate NH/P68 i.m (103 TCDI50/ml) Serum obtained at 97 dpi.
S5	CHRONIC	ATTENUATED	NH/P68	I	D42	Pig keep in contact with pigs inoculated with 1x Portuguese ASFV isolate NH/P68 i.m. (105 TCDI50/ml). Serum obtained at 42 dpi.
S6	ACUTE	VIRULENT	Arm07	u	D8	1x Armenian ASFV isolate Arm07 i.m. (10 HAU/ml). Serum obtained at D8 dpi.
S7			1	Naive p	ig (ASF ı	negative)
S8	SUBACUTE	MODERATE	Ken05/Tk1	х	D70	1x Kenyan ASFV isolate Ken05/Tk1 i.m. (10 HAU/ml). Serum obtained at 70 dpi.
S9	ACUTE	VIRULENT	Benin/97	I	D7	1x Benin ASFV isolate i.m. Benin/97 (10 HAU/ml). Serum obtained at 7 dpi.
S10	CHRONIC	ATTENUATED	NH/P68	I	D105	1x Portuguese ASFV isolate NH/P68 i.m. (105 TCDI50/ml). Serum obtained at 105 dpi.
S11	ACUTE	VIRULENT	LT14/1492	Ш	D17	Pig kept in contact with pigs i.m. inoculated with 10 HAU/ml Lithuanian ASFV isolate LT14/1492. Serum obtained at 17dpi.
S12	CHRONIC	ATTENUATED	NH/P68	I	D41	1x Portuguese ASFV isolate NH/P68 i.m. (105 TCDI50/ml). Serum obtained at 41 dpi.
S13	CHRONIC	ATTENUATED	NH/P68	I	D105	1x Portuguese ASFV isolate NH/P68 i.m. (105 TCDI50/ml). Serum obtained at 105 dpi.
S14			1	Naive p	ig (ASF ı	negative)

The panel includes around 20 sera and tissues collected from pigs infected with ASFVs of different genotypes and virulence that induce various clinical forms.

ILCT: What does it consist of?


Sample delivery → 36 participants in 2023-2024

26 NRLs from EU Member States 8 NRLs from Europe non-EU Member states 1 non NRL from EU Member State 1 NRL from non-European country

ALL EU NRLs from Member States PARTICIPATE in the ILCT (1NRL have ASF diagnosis transferred

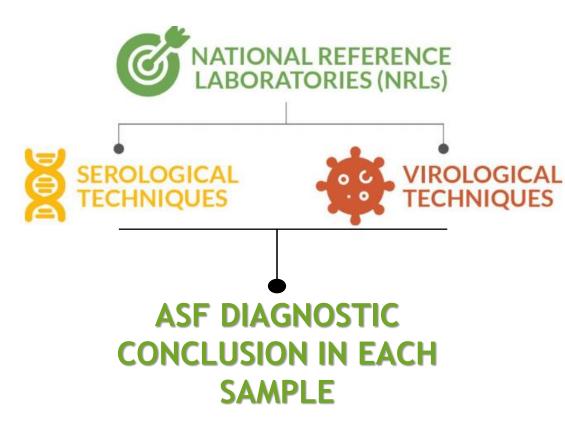
to neighbouring NRLs belonging to MS country)

ILCT: What does it consist of?

Sample delivery → Western Balkan countries

ILCT	ALBANIA	Bosnia and Herzegovina	Kosovo	NORTH MACEDONIA	MONTENEGRO	SERBIA
XI-ILCT 2013-2014	Z	Z	Z	Z	Z	Yes
XII-ILCT 2014-2015	Z	Z	Z	Z	Z	Yes
XIII-ILCT 2015-2016	Z	Z	Z	Z	Z	Yes
XIV-ILCT 2016-2017	Z	Z	Z	Z	Z	Yes
XV-ILCT 2017-2018	Z	Z	Z	Yes	Z	Yes
XVI-ILCT 2018-2019	Z	Z	Z	Yes	Z	Yes
XVII-ILCT 2019-2020	(-)	(-)	(-)	Yes	Yes	Yes
XVIII-ILCT 2020-2021	(-)	Yes	Yes	Yes	Yes	Yes
XIX-ILCT 2021-2022	(-)	Yes	Yes	Yes	Yes	Yes
XX-ILCT 2022-2023	(-)	(-)	Yes	Yes	Yes	Yes
XXI-ILCT 2023-2024	(-)	Yes	Yes	Yes	Yes	Yes

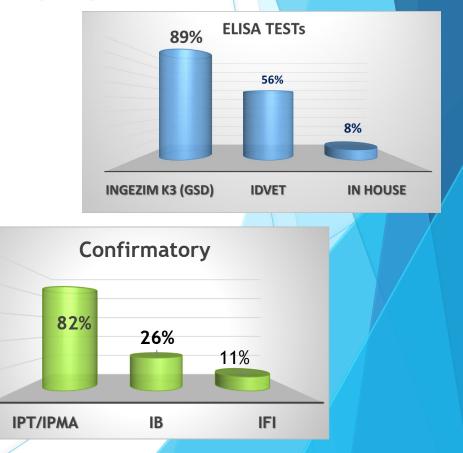
- Yes \rightarrow the NRL received the panel of samples and sent the results on time


- * $X \rightarrow$ the NRL received the panel of samples but didn't send the results on time
- (-) \rightarrow the NRL didn't participate.
- $(Z) \rightarrow Not invited$

ILCT: What does it consist of?

Analysis of the results

	/.			
D CODE:	ſ.			
LABORAT				
		N-		
email add				
		Ab detection	Virus detection	ASF diagnostic conclusion
	1			
	2			
	3 4			
	5			
	6			
	7			
SERA	8			
	9			
	10			
	11			
	12			
	13			
	14			
	<u>15</u> 1			
	1 2			
	4			
Tissues	3			


ILCT: What does it consist of?

Analysis of the results → Type of techniques employed

Serological techniques (all participants)

- ALL labs performed the ASF serological diagnosis.
- Techniques:
 - ✓ Screening: INGENASA ELISA K3 is the technique most widely used for ASF antibody detection (89%).
 - Confirmatory test: 75% of participants have used at least one confimatory test.
 - The immunoperoxidase technique (IPT) is the chosen procedure (81.5%).

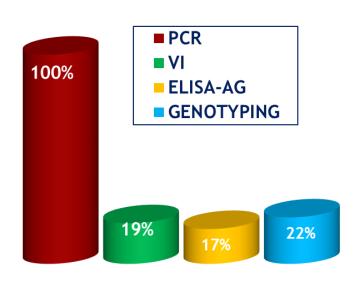
ILCT: What does it consist of?

Analysis of the results → Type of techniques employed

Serological techniques (Western Balkan countries)

XXI-ILCT 2023-2024	Bosnia and Herzegovina	Kosovo	NORTH MACEDONIA	MONTENEGRO	SERBIA
ELISA	Ingezim PPA-K3	IDVET	IDVET	Ingezim PPA-K3	Ingezim PPA-K3
CONFIRMATORY TEST	NO	NO	NO	Yes	IB

All labs have at least the ELISA test for ASF antibody detection as a minimum requirement.



ILCT: What does it consist of?

Analysis of the results → Type of techniques employed

Virological techniques (all participants)

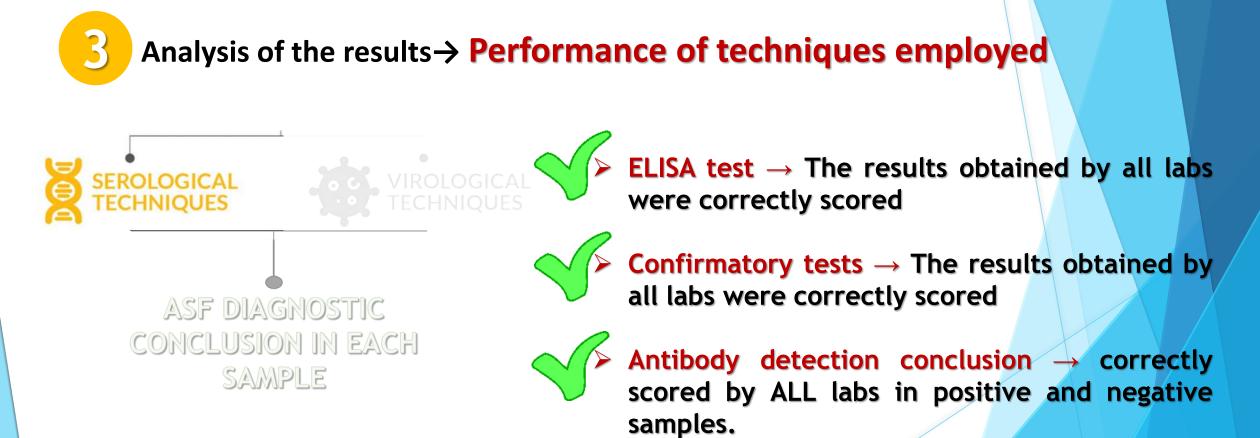
- ALL participating laboratories performed the virological diagnosis in serum and tissue samples.
- Techniques: PCR test ALL participants use it for ASFV detection (100%).
 - The 58% of participants have used more than one PCR test.
 - All labs used at least one Real-Time PCR while conventional PCR was performed by 19%
 - The UPL real time PCR is the most widely used (56%).

ILCT: What does it consist of?

Analysis of the results → Type of techniques employed

Virological techniques (Western Balkan countries)

XXI-ILCT 2023-2024		MONTENEGRO	KOSOVO	BOSNIA	SERBIA	NORTH MACEDONIA
Conventional PCR		(-)	(-)	(-)	(-)	Yes
	WOAH PCR (a)	Yes	Yes	(-)	(-)	Yes
Real time	WOAH UPL PCR (b)	(-)	(-)	(-)	Yes	Yes
PCR	In house	(-)	(-)	(-)	(-)	Yes
	Commercial	(-)	(-)	Yes	(-)	(-)
Ag-ELISA		(-)	(-)	Yes	(-)	(-)

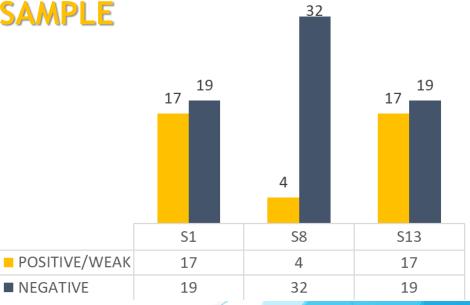

(a) WOAH- real time PCR \rightarrow real time PCR (King et al., 2003) technique as is described in the WOAH Manual of diagnosis for ASF (Chapter 3.9.1. WOAH edition 2021).

(b) WOAH-UPL-PCR→ universal probe library (UPL) real time PCR developed by Fernández et al., 2013 described in the WOAH Manual of diagnosis for ASF (Chapter 3.9.1. WOAH edition 2021).

All labs have the PCR test for ASFV genome detection as a minimum requirement.

ILCT: What does it consist of?

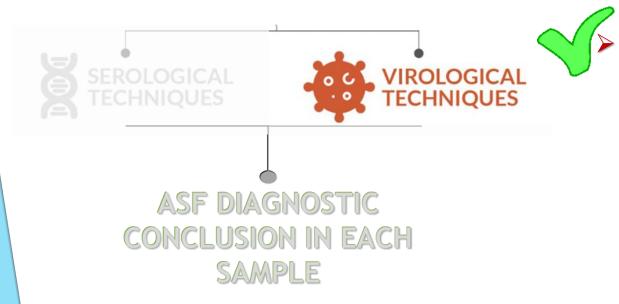
ILCT: What does it consist of?



Analysis of the results → Performance of techniques employed

DEVIATIONS IN WEAK Ab POSITIVE SAMPLE (low Ab titer)

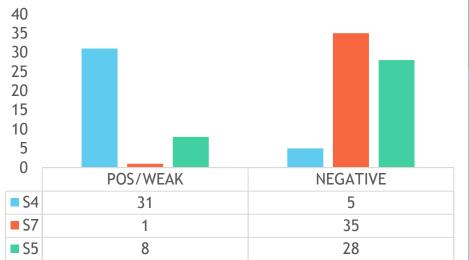
- > S1 \rightarrow The results were correctly scored by the 47,2% of participant labs (17/36).
- > S2 \rightarrow The results were correctly scored by the 11,1% of participant lab (4/36).
- > S3 \rightarrow The results were correctly scored by the 47,2% of participant labs (17/36).


These samples are strong PCR positive samples

ILCT: What does it consist of?

Analysis of the results → Performance of techniques employed

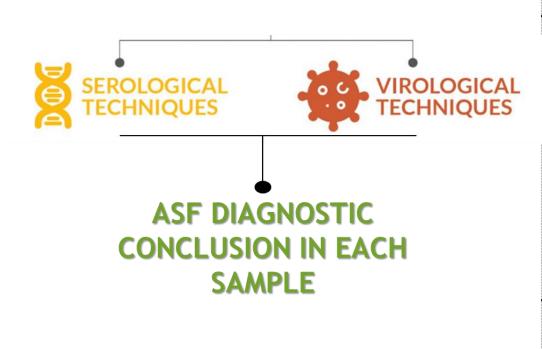
Virus detection conclusión (PCR test) \rightarrow correctly scored by ALL labs in positive and negative samples.


ILCT: What does it consist of?

Analysis of the results → Performance of techniques employed

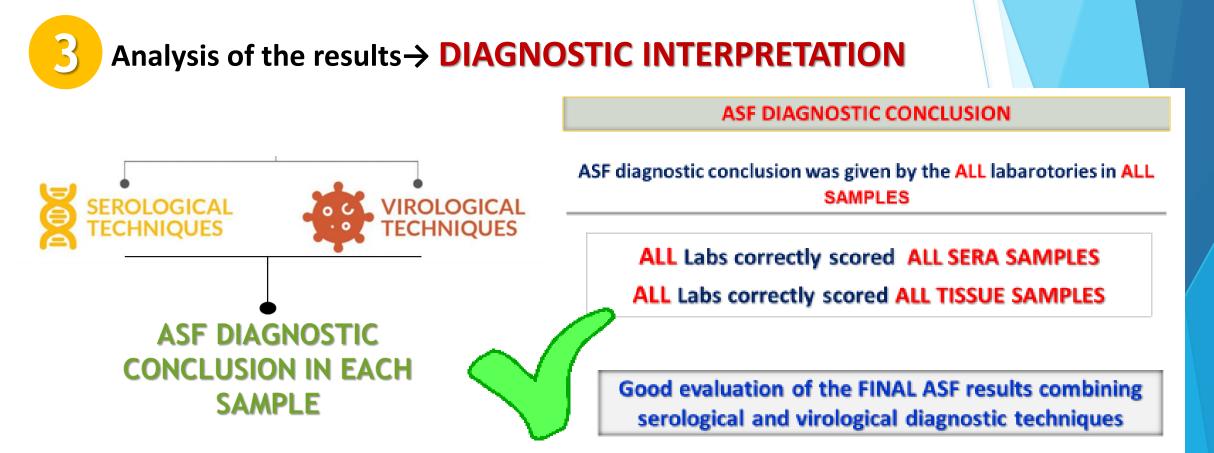
DEVIATIONS IN WEAK PCR POSITIVE SAMPLE (low ASFV genome content)

- > S4 \rightarrow The results were correctly scored by the 86,1% of participant labs (31/36).
- > S7 \rightarrow The results were correctly scored by the 2,7% of participant lab (1/36).
- > S5 \rightarrow The results were correctly scored by the 22,2% of participant labs (8/36).



These samples are strong Ab positive samples

ILCT: What does it consist of?


Analysis of the results → **DIAGNOSTIC INTERPRETATION**

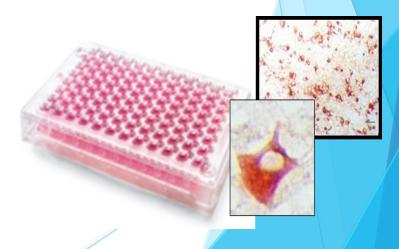
	AB DET	ECTION	VIRUS D	ETECTION	A	SF diagnostic conclusion
	EURL	ID 28	EURL	ID 28	EURL	ID 28
S1	WEAK	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	ASF serology negative, virology positive
S2	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	ASF serology negative, virology negative
S3	NEGATIVE	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	ASF serology negative, virology positive
S4	POSITIVE	POSITIVE	WEAK	NEGATIVE	POSITIVE	ASF serology positive, virology negative
S5	POSITIVE	POSITIVE	NEGATIVE	NEGATIVE	POSITIVE	ASF serology positive, virology negative
S6	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	ASF serology negative, virology negative
S7	POSITIVE	POSITIVE	NEGATIVE	NEGATIVE	POSITIVE	ASF serology positive, virology negative
S8	WEAK	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	ASF serology negative, virology positive
S9	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	ASF serology negative, virology negative
S10	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	ASF serology negative, virology negative
S11	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	ASF serology negative, virology negative
S12	POSITIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	ASF serology positive, virology positive
S13	WEAK	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	ASF serology negative, virology positive
S14	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	ASF serology negative, virology negative
S15	POSITIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	ASF serology positive, virology positive
T1			POSITIVE	POSITIVE	POSITIVE	ASF virology positive
T2			POSITIVE	POSITIVE	POSITIVE	ASF virology positive
T3			NEGATIVE	NEGATIVE	NEGATIVE	ASF virology negative
T4			POSITIVE	POSITIVE	POSITIVE	ASF virology positive
T5			NEGATIVE	NEGATIVE	NEGATIVE	ASF virology negative

ILCT: What does it consist of?

Including the NRLs from Western Balkan countries...

From the XXI ASF ILCT 2024 results...

- The EURL concluded that the western Balkan countries that have participated in the ILCT, including Serbia, North Macedonia, Bosnia, Kosovo, and Montenegro, are successfully applying diagnostic procedures that meet the necessary standards for accurate ASF diagnosis.
- The NRLs meet the minimum diagnostic requirements for ASF by having at least one antibody test (such as ELISA) and a PCR test in place. These tools ensure effective monitoring and control of ASF in the region.
- Their methodologies have been deemed 'fit for purpose' by the EU Reference Laboratory for ASF.



TO ENSURE AVAILABILITY AND USE OF HIGH QUALITY METHODS AND TO ENSURE HIGH QUALITY PERFORMANCE BY NRLs

Supply of ASF reference standards, biological material and reagents for ASF diagnosis.

ASF REAGENTS	KOSOVO	BOSNIA	SERBIA
ASF-PC (ml)	1	2.1	2.1
ASF NC (ml)	1	2.1	2.1
ASF-LC (ml)	1	2.1	2.1
ASF-IPT plates/ analysis	-	3 /288	3 /288
HRP- Protein A (mg)	1	1	5
IB strips	100	53	202

TO ENSURE AVAILABILITY AND USE OF HIGH QUALITY METHODS AND TO ENSURE HIGH QUALITY PERFORMANCE BY NRLs

Supply of ASF-URL reference material for validation and internal verification of ASF diagnostic techniques.

- Panel Ref-1: Ten URL-ASF reference serum samples for the evaluation and internal verification of ASF antibody detection techniques.
- Panel Ref-2: Sixteen URL-ASF reference samples for the evaluation and internal verification of DNA extraction methods.
- Panel Ref-3: Twenty one URL-ASF reference DNAs for the evaluation and internal verification of DNA amplification by PCR tests.

	REF-1	REF-2	REF-3
BOSNIA	-	1	2
KOSOVO	-	1	1
MONTENEGRO	-	-	2
SERBIA	1	1	1
TOTAL	1	3	6

TO PROVIDE SCIENTIFIC AND TECHNICAL ASSISTANCE TO NRLS CONSISTING OF

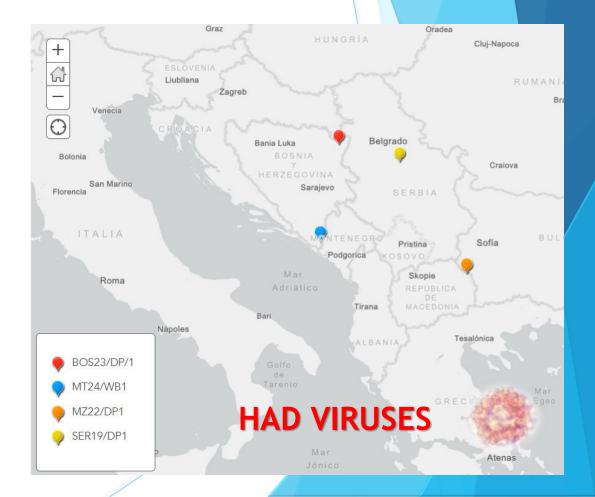
Conducting face to face and/or virtual training courses on ASF laboratory diagnosis

for staff from NRLs or other official labs.

Country	DATE		PARTICIPANTS	
Country	DATE	N° LABORATORY		Three short term trainings on ASF
				Thee short term trainings of Asr
MONTENEGRO	21-25 November	1	Montenegro´s NRL	diagnostic and Laboratory contingency plan
	2016	•		(LCP) at the EURL INIA-CISA with the
KOSOVO	25-29 November	2	Kosovo Food and Veterinary Laboratory	participation of staff from western Balkan
	2019		(Kosovo´s NRL)	countries
SERBIA	15 th to 19 th April 2024	2	Serbia´s NRL	

All NRLs are welcome to attend training courses at the EURL to enhance their diagnostic capacity if needed.

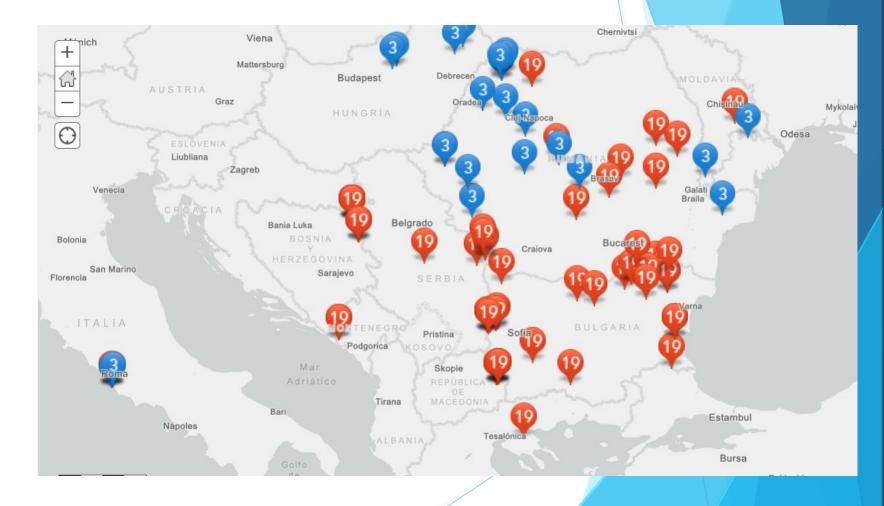
3



TO PROVIDE SCIENTIFIC AND TECHNICAL ASSISTANCE TO THE EUROPEAN COMMISSION AND OTHER ORGANISATIONS THROUGH

Active assistance in the **diagnosis of the** primary ASF outbreaks

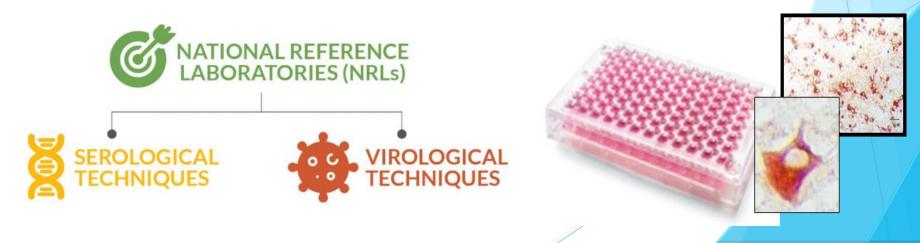
ASFV ISOLATE	COUNTRY	Collection Date	HOST
SER19/DP1	Serbia	30 July 2019	DP
BOS23/DP/1	Bosnia	22 June 2023	DP
MZ22/DP1	North Macedonia	10 January 2022	DP
MT24/WB1	Montenegro	12 January 2024	EWB



EUROPEAN UNION REFERENCE LABORATORY FOR AFRICAN SWINE FEVER

And genetic characterization to trace the outbreaks

The ASFVs from Western Balkan countries cluster in the genotype II genetic group 19, the second largest one in the European countries


Genetic Group	Geographical distribution (year)		(Genetic	varian	ts	
Selletic Group	Geographical distribution (year)	CVR	IGR	0174L	K145R	MGF	ECO2
1	Georgia (2007), Armenia (2007,2008), Azerbaijan (2008), Russia Federation (2009,2012)	I	I	I	I	I	I
2	Russia Federation (2012).	1	1	1	1	II	1
3	Ukraine (2012-2019), Belarus (2013), Lithuania (2014-2022), Poland (2014, 2018, 2021), Latvia (2014-2021), Estonia (2014-2022), Czech RP (2017, 2018), Romania (2017-2021), Moldova (2017-2018), Hungary (2018-2019), Slovakia (2019), Italy (2022, 2023).	I	II	1	I	I	I
4	Russia Federation (2012).	1	I		1	III	1
5	Estonia (2015)	II	II	1	1	1	1
6	Poland (2016, 2019, 2021), Germany (2020, 2021) and Czech Republic (2022)	I	П	П	П	I	I.
7	Poland (2016-2019, 2021), Lithuania (2017-2022), Romania (2019)	I	П	I	П	I	I
8	Poland (2016, 2017)	1	П	1	II	II	1
9	Estonia (2017)	I-SNP1	II	1	1	1	1
10	Poland (2017)	1	1	I	11	1	1
11	Poland (2017)	I-SNP2	II	I	II	I	T
12	Latvia (2017, 2018, 2021)	1	П	1	1	II	1
13	Poland (2017)	1	Ш	II	II	I	1
14	Lithuania (2017)	I-SNP3	II	1	1	1	
15	Lithuania (2017)	1	II		1	V	
16	Lithuania (2017, 2018)	1	11		1	IV	
17	Latvia (2017, 2018)	1	11	1	1	I-V1	
18	Poland (2018)		III	II		1	1
19	Romania (2018, 2021), Bulgaria (2018-2020), Serbia (2019, 2020), Greece (2020), North Macedonia (2022), Italy (2022), Croatia (2023, 2024), Sweden (2023), Montenegro (2024)	I	II	ı	ı	ı	"
20	Poland (2018, 2019, 2021)	I	IV	1	Ш	1	1
21	Romania (2019)	i	ii ii		i	I	i
22	Romania (2019)	1	II	1	1	1	II
23	Lithuania (2020)	1	II	1	1	VII	1
24	Romania (2021)	1	П	1	1	VI	1
25	Italia (Lazio-2023)	1	П	1	11	VIII	1
26	Italia (Piedmonte-2023)	1	П	I/SNP1	1	1	1
27	Poland (2021)	1	П	1	11	V	1
28	Estonia (2022)	1	II	Ì	1	IX	1

I215L mutation (ECO2 variant)

Participation in the ILCT and Diagnostic Capacity: Western Balkan countries, including Serbia, North Macedonia, Bosnia, Kosovo, and Montenegro, actively participated in the XXI ILCT (2023-2024). These countries demonstrated adequate diagnostic capabilities by employing both serological and virological (PCR tests) methods. All countries have the required minimum standards for ASF antibody and genome detection techniques.

Provision of Training and Resources: EURL has provided hands-on support, including training and the provision of biological materials which have helped them enhance their diagnostic capabilities.

MAIN CONCLUSIONs

- Support in ASF Outbreak Diagnosis: The EURL has provided support in the confirmatory diagnosis of ASF outbreaks in Serbia, North Macedonia, Bosnia, and Montenegro. In 2024, the cooperation has extended to Kosovo and Albania to further enhance regional collaboration in ASF control efforts.
- □ Tracing the outbreaks: Genetic characterization of ASF strains from the region has clustered them within genotype II, genetic group 19, circulating in the central-south European countries. To continue with the genetic characterization is crucial for tracking outbreaks and ensuring coordinated transboundary efforts in ASF control.

In conclusion the cooperation between the Western Balkan countries and the EURL has improved the ASF diagnostic capacity. This partnership will continue to be crucial in addressing future ASF outbreaks and ensuring the region's preparedness to combat this disease effectively.

EU Reference Laboratory for ASF Animal Health Research Centre (CISA), INIA Ctra Algete-El Casar s/n 28130, Valdeolmos, Spain

AKNOWLEDGMENTS

To the EURL FOR ASF , INIA-CISA/CSIC

And to the NRLs for your collaboration

