

WOAH Reference Laboratory for Lumpy skin disease

Funded by the European Union

for Capripox viruses

EU Reference Laboratory

Food and Agriculture Organization of the United Nations

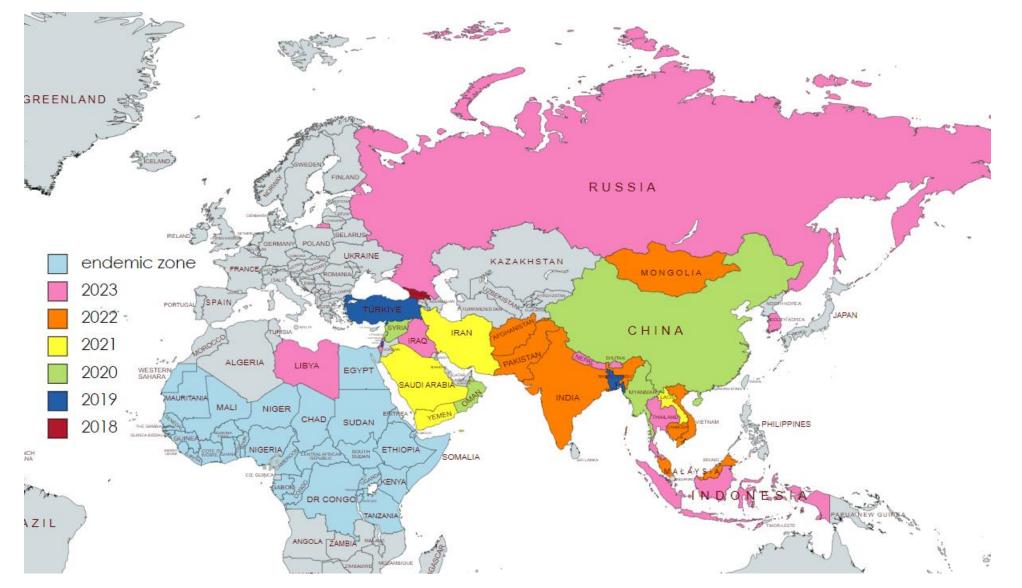
healthy all life long

EURL FOR CAPRIPOX VIRUSES

LATEST ACTIVITIES ON LUMPY SKIN DISEASE AND UPDATE ON DIAGNOSIS

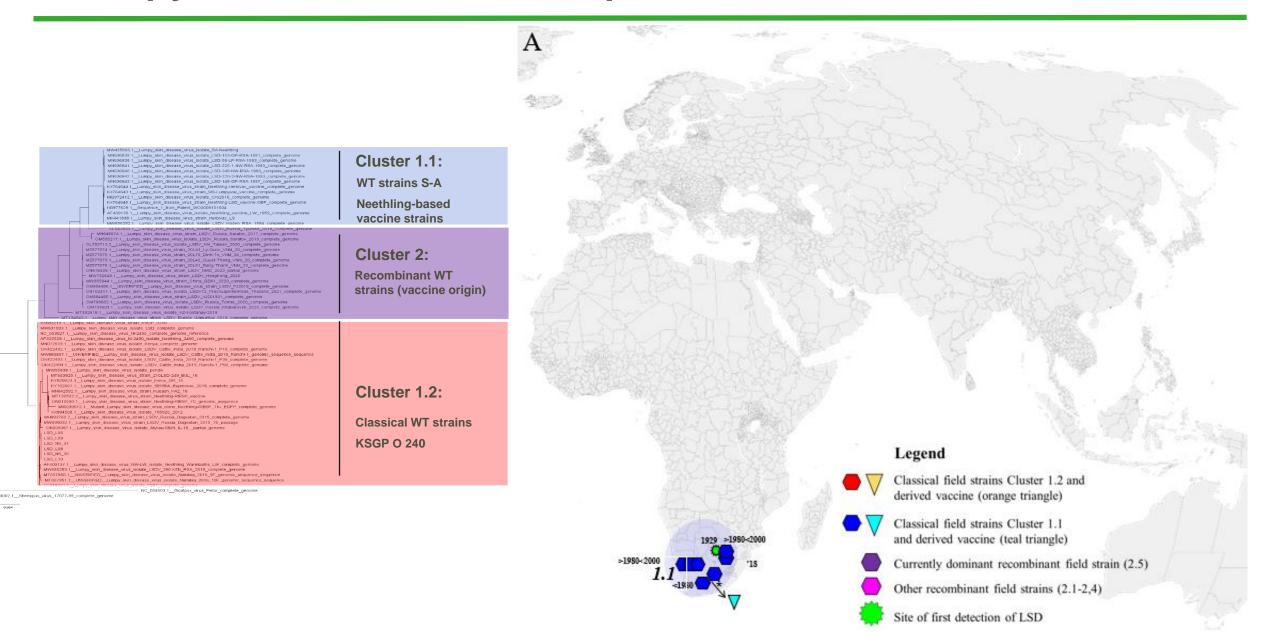
Nick De Regge

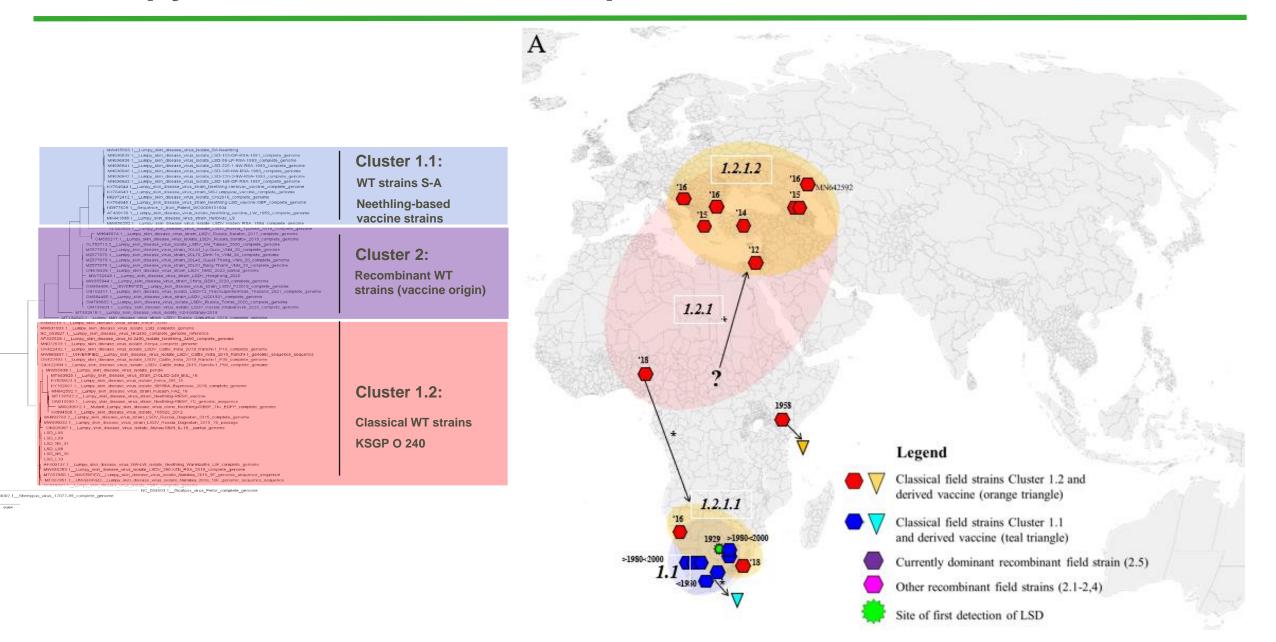
Online meeting – GF-TAD SGE LSD Europe

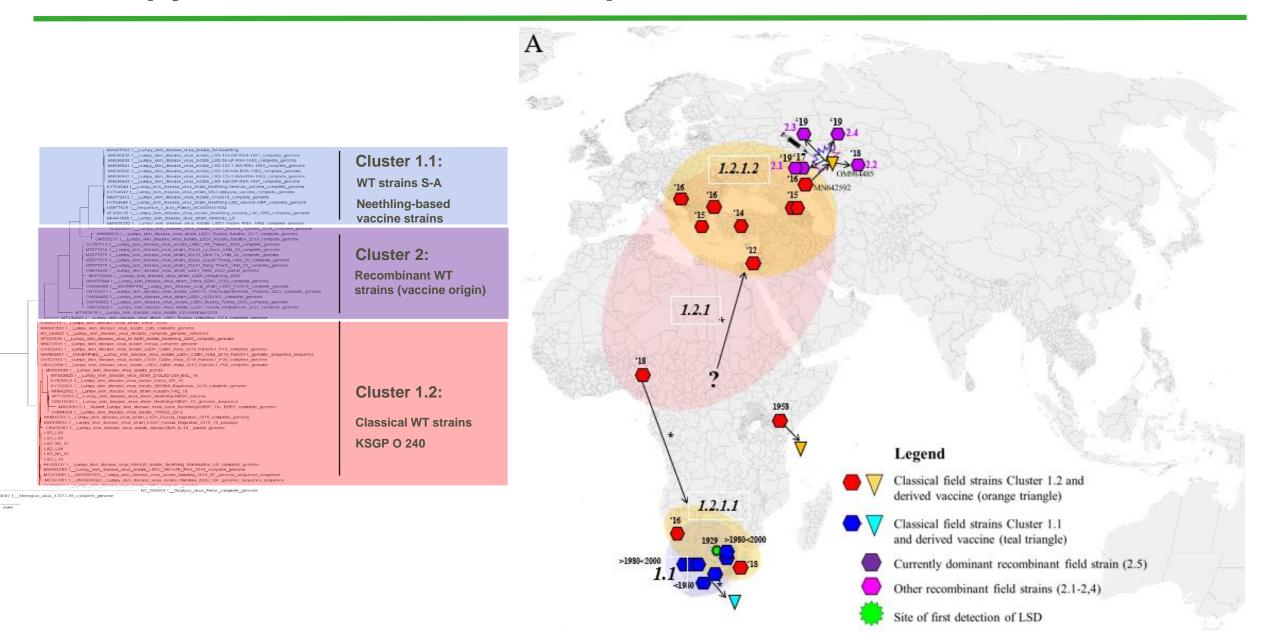

21 February 2024

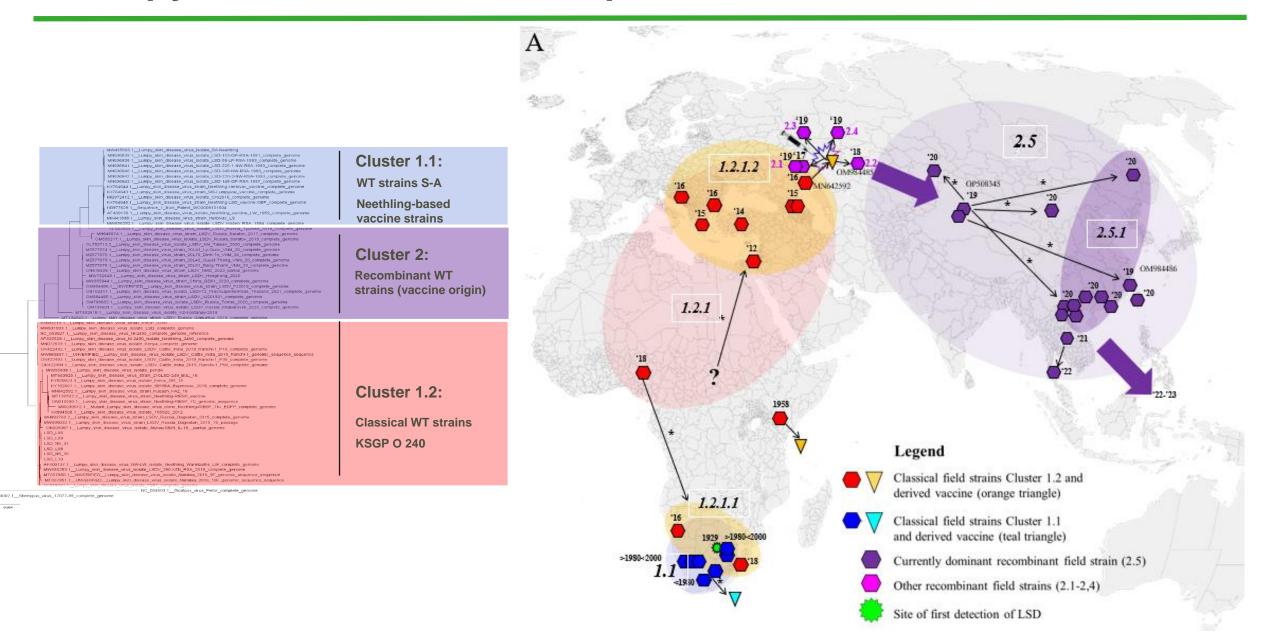
- Current epidemiological situation LSDV
- LSDV diagnosis: serology
- LSDV diagnosis: virology
- LSDV vaccines: protection against recombinant strain
- LSDV transmission: non-vector transmission of the recombinant strain
- Training and support

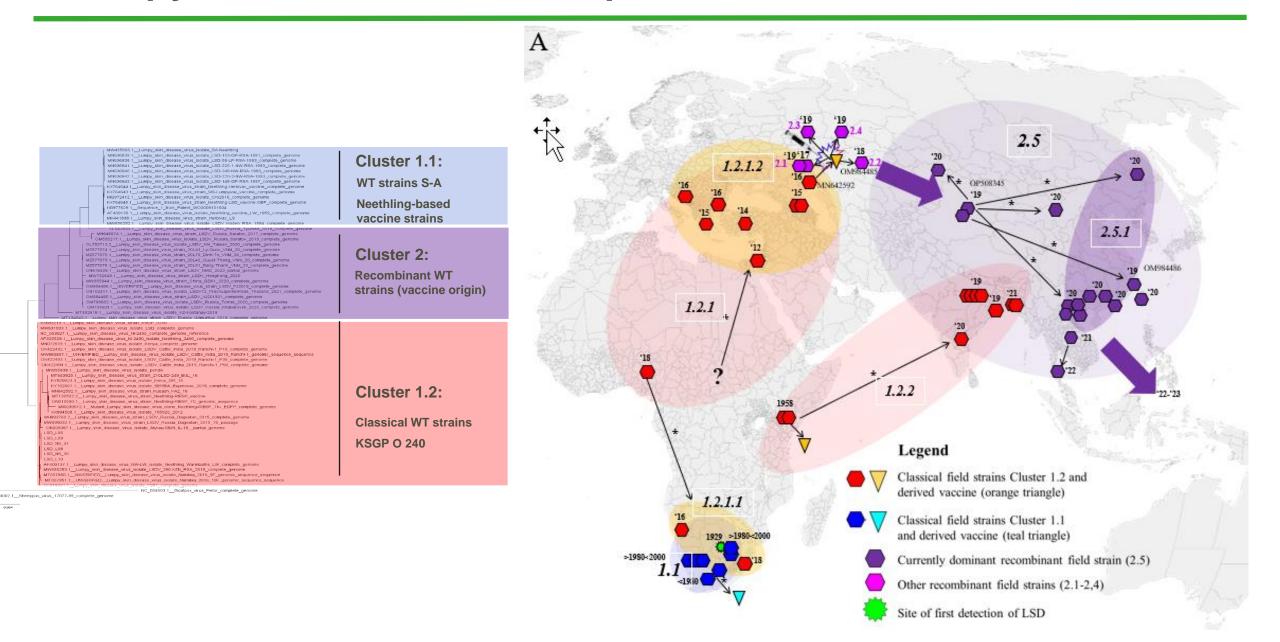
Most recent reported LSDV outbreaks (2018 – 12/2023)

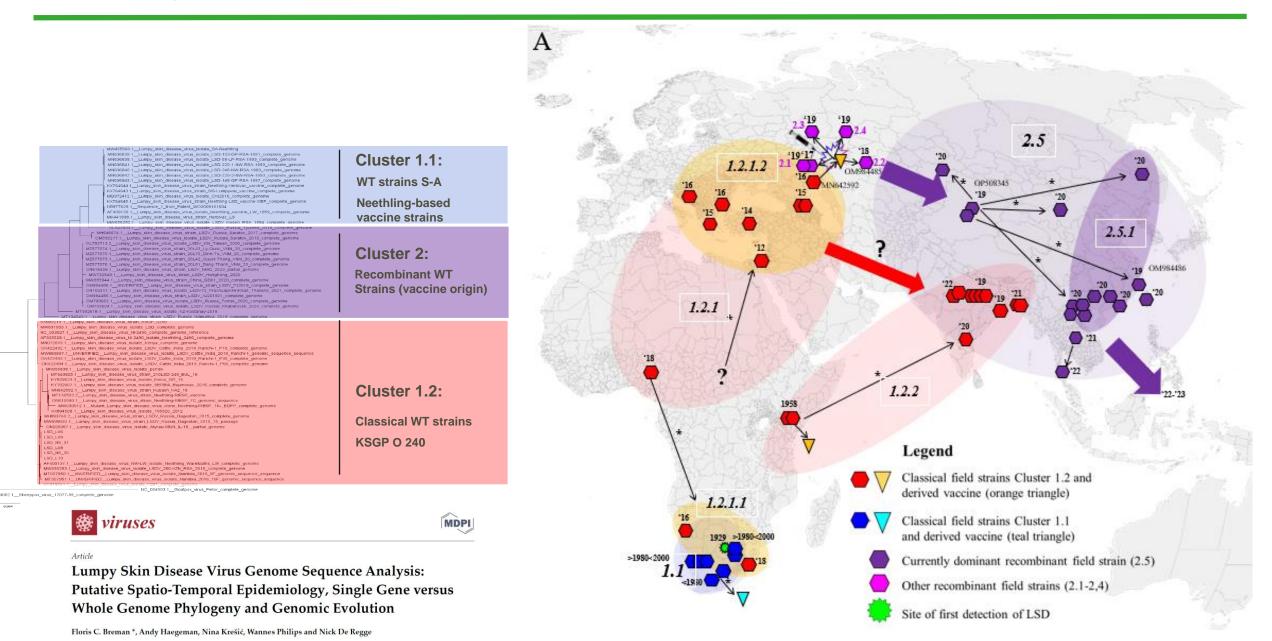

Data extracted from WOAH-WAHIS database

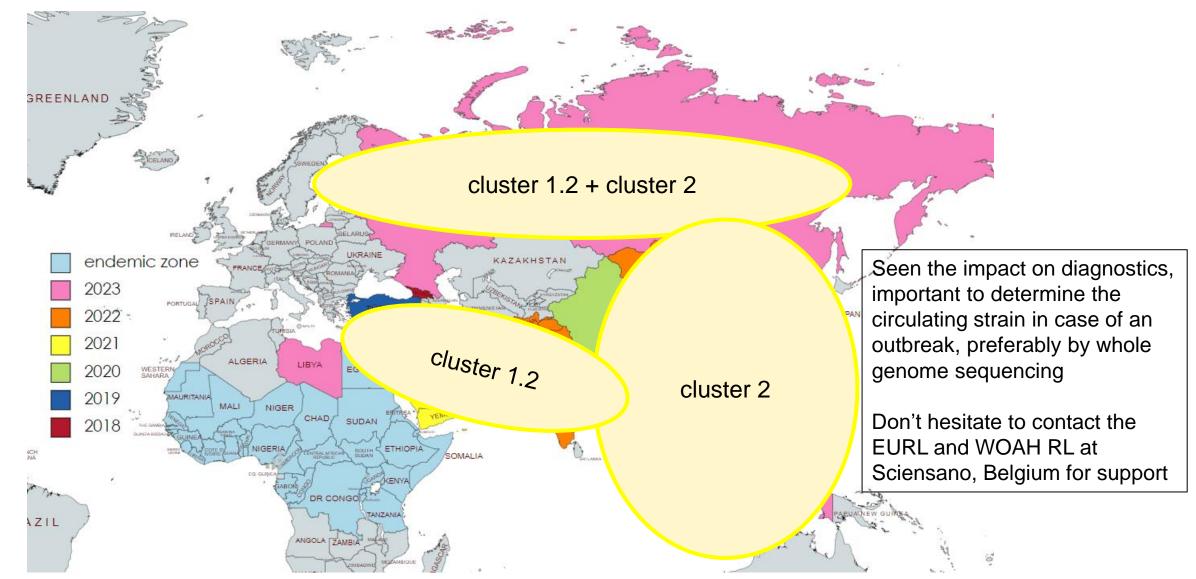


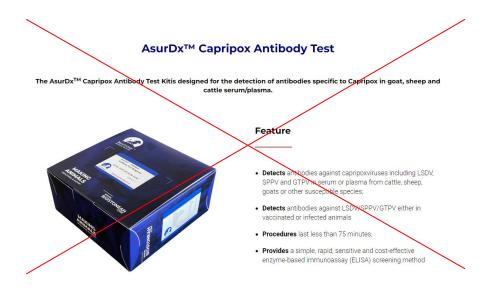

Lumpy skin disease virus: phylogeny


Article Lumpy Skin Disease Virus Genome Sequence Analysis: Putative Spatio-Temporal Epidemiology, Single Gene versus Whole Genome Phylogeny and Genomic Evolution Floris C. Breman *, Andy Haegeman, Nina Krešić, Wannes Philips and Nick De Regge	MW435866.1_Lumpy_skin_disease_virus_isolate_SA-Neethling MN636839.1_Lumpy_skin_disease_virus_isolate_LSD-D3-GP-RSA-1991_complete_genome MN636838.1_Lumpy_skin_disease_virus_isolate_LSD-220-1-NW-RSA-1993_complete_genome MN636840.1_Lumpy_skin_disease_virus_isolate_LSD-248-NW-RSA-1993_complete_genome MN636840.1_Lumpy_skin_disease_virus_isolate_LSD-248-NW-RSA-1993_complete_genome MN636840.1_Lumpy_skin_disease_virus_isolate_LSD-248-NW-RSA-1993_complete_genome MN636843.1_Lumpy_skin_disease_virus_isolate_LSD-248-NW-RSA-1993_complete_genome MN636843.1_Lumpy_skin_disease_virus_strain_Neethling-Herbixac_vaccine_complete_genome Kx764644.1_Lumpy_skin_disease_virus_strain_Neethling-Herbixac_vaccine_complete_genome Kx764644.1_Lumpy_skin_disease_virus_strain_Neethling-LSD-vaccine_complete_genome MK636252.1_Lumpy_skin_disease_virus_strain_Neethling_LSD_vaccine_complete_genome MK636252.1_Lumpy_skin_disease_virus_strain_Neethling_LSD_vaccine_complete_genome MK636252.1_Lumpy_skin_disease_virus_strain_Herbixac_LSD MK636252.1_Lumpy_skin_disease_virus_strain_Herbixac_LSD	Cluster 1.1: WT strains S-A Neethling-based vaccine strains	
	 OLS42833 1_Lumpy_skin_disease_virus_isolate_LSUV_Russia_lyumen_2019_complete_genome MH646674 1, Lumpy_skin_disease_virus_isolate_LSDV_Russia_Saratov_2017_complete_genome OK530217.1_Lumpy_skin_disease_virus_isolate_LSDV_RW_Tawan_2020_complete_genome OL752713.2_Lumpy_skin_disease_virus_isolate_LSDV_KM_Tawan_2020_complete_genome MZ577075.1_Lumpy_skin_disease_virus_isolate_LSDV_KM_Tawan_2020_complete_genome MZ577075.1_Lumpy_skin_disease_virus_isolate_LSDV_KM_Tawan_2020_complete_genome MZ577075.1_Lumpy_skin_disease_virus_isolate_DSV_KM_20_complete_genome MZ577075.1_Lumpy_skin_disease_virus_isolate_DSV_KMG_2020_complete_genome MZ577075.1_Lumpy_skin_disease_virus_isolate_DSV_KMG_2020_partial_genome ONI516408.1_Lumpy_skin_disease_virus_isolate_DSV_KMG_2020_complete_genome OMI93644.1_Lumpy_skin_disease_virus_isolate_DSV_KMG_2020_complete_genome OMI93648.1_UMPY_skin_disease_virus_isolate_DSV_KJ2019_Complete_genome OMI93648.1_LUMPY_skin_disease_virus_isolate_DSV_KJ20190_complete_genome OMI93648.1_LUMPY_skin_disease_virus_isolate_LSDV_ZP_rachuapKhirikhan_Thalland_2021_complete_genome OMI93663.1_Lumpy_skin_disease_virus_isolate_LSDV_Russia_Tomsk_2020_complete_genome OMI93663.1_Lumpy_skin_disease_virus_isolate_LSDV_Russia_Tomsk_2020_complete_genome OMI93663.1_LUMPY_skin_disease_virus_isolate_LSDV_Russia_Tomsk_2020_complete_genome 	Cluster 2: Recombinant WT strains (vaccine origin)	Origin: badly produced LSDV vaccine containing neethling strain, KSGP strain, and recombinants between both
	M1992618 1_Lumpy_skin_disease_virus_tsials_EK2K-kostanay-2018 MT134042.1_Lumpy_skin_disease_virus_USDV_Russia_Udmurtya_2019_complete_genome MX6931933.1_Lumpy_skin_disease_virus_Strain_KSOM_U240 MX6931933.1_Lumpy_skin_disease_virus_ISolate_LSD_complete_genome AF325528.1_Lumpy_skin_disease_virus_ISolate_KSDV_Cattle_India_2019_Ranchi-1_P10_complete_genome MX072619.1_Lumpy_skin_disease_virus_ISolate_KSDV_Cattle_India_2019_Ranchi-1_P10_complete_genome OK422492.1_Lumpy_skin_disease_virus_ISolate_LSDV_Cattle_India_2019_Ranchi-1_P10_complete_genome OK422493.1_Lumpy_skin_disease_virus_ISolate_LSDV_Cattle_India_2019_Ranchi-1_P30_complete_genome OK422493.1_Lumpy_skin_disease_virus_Isolate_LSDV_Cattle_India_2019_Ranchi-1_P50_complete_genome OK422493.1_Lumpy_skin_disease_virus_Isolate_LSDV_Cattle_India_2019_Ranchi-1_P50_complete_genome OK422493.1_Lumpy_skin_disease_virus_Isolate_ESREN_Cattle_India_2019_Ranchi-1_P50_complete_genome OK422493.1_Lumpy_skin_disease_virus_Isolate_ESREN_Cattle_India_2019_Ranchi-1_P50_complete_genome OK422493.1_Lumpy_skin_disease_virus_Isolate_ESREN_2015 OK42251_Lumpy_skin_disease_virus_Isolate_ESREN_2016 MT1030502_Lumpy_skin_disease_virus_Isolate_ESREN_2016 MT1030502_Lumpy_skin_disease_virus_strain_Neethling-RIBSP_TKGenomic_sequence MV0030512.1_Mutant_Lumpy_skin_disease_virus_Isolate_ISDSP_C129000000000000000000000000000000000000	Cluster 1.2: Classical WT strains	
	MH993760.2_LLImpy_skin_disease_virus_strain_LSUV_Russia_Dagestan_2016_76_passage - ON005067.1_Lumpy_skin_disease_virus_strain_LSUV_Russia_Dagestan_2016_76_passage - ON005067.1_Lumpy_skin_disease_virus_isolate_Atyrau-SBJN_IL-18_partial_genome I LSD_L06 LSD_NS_30 LSD_L08 LSD_L10 - AF409137.1_Lumpy_skin_disease_virus_NW-LW_isolate_Neething_Warmbaths_LW_complete_genome MW656253.1_Lumpy_skin_disease_virus_Solate_LSDV_280-K2N_RSA_2018_complete_genome MW0565253.1_LUMPy_skin_disease_virus_isolate_LSDV_280-K2N_RSA_2018_complete_genome MW0565253.1_LUMPy_skin_disease_virus_isolate_LSDV_280-K2N_RSA_2018_complete_genome MW0565253.1_LUMPy_skin_disease_virus_isolate_LSDV_280-K2N_RSA_2018_complete_genome - MT007351.1_UNVERIFIED_Lumpy_skin_disease_virus_isolate_Namibia_2016_10F_genomic_sequence_sequence - OK318001.1_1_Lumpy_skin_disease_virus_isolate_V381_complete_genome	KSGP O 240	


NC_004002.1__Sheeppox_virus_17077-99_complete_genome



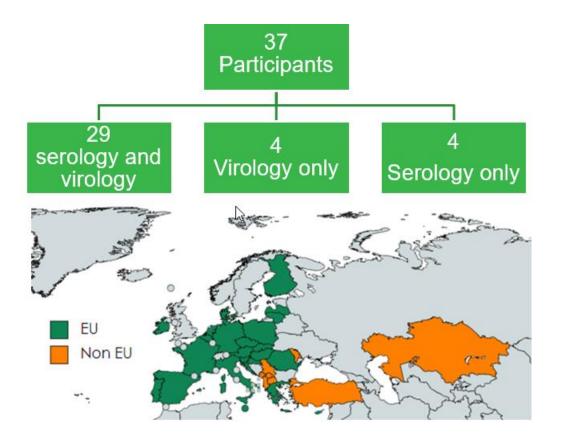


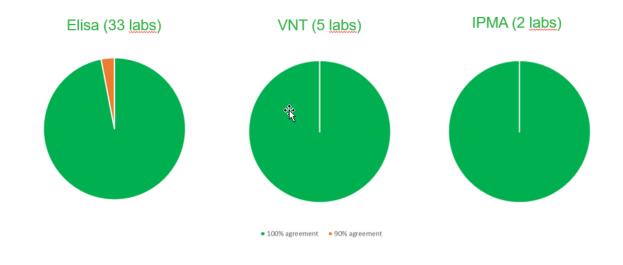

Most recent reported LSDV outbreak (2018 – 12/2023)

LSDV diagnosis - serology

- VNT IPMA commercial ELISA (ID-Vet)
- Unsatisfactory ELISA:

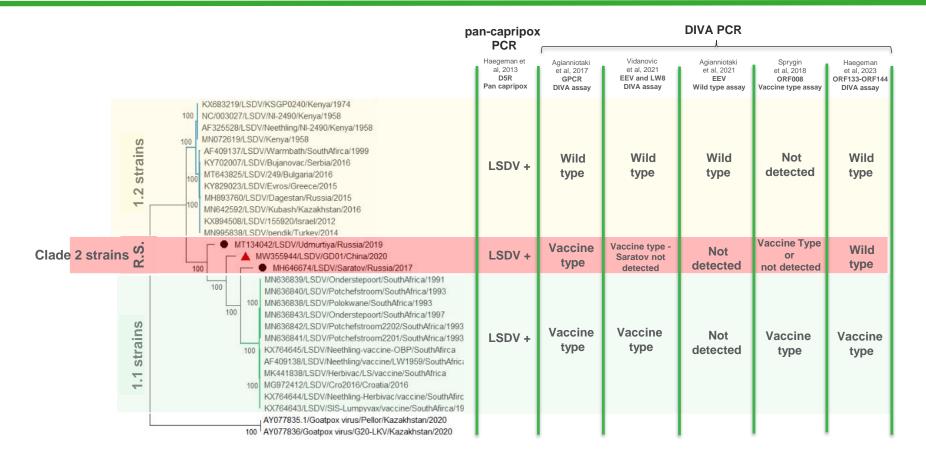
• Experimental DIVA ELISA:


Article


Harnessing Attenuation-Related Mutations of Viral Genomes: Development of a Serological Assay to Differentiate between Capripoxvirus-Infected and -Vaccinated Animals

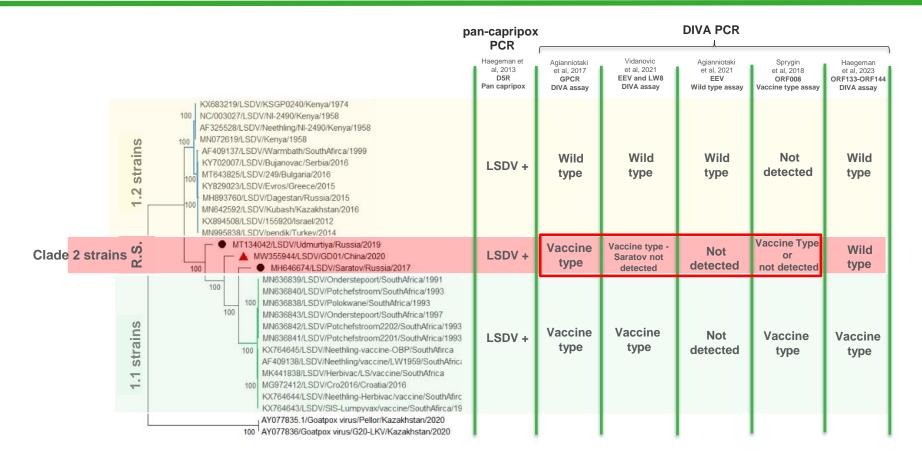
Francisco J. Berguido ^{1,2,*}, Tesfaye Rufael Chibssa ³, Angelika Loitsch ⁴, Yang Liu ⁵, Kiril Krstevski ⁶, Igor Djadjovski ⁶, Eeva Tuppurainen ⁷, Tamaš Petrović ⁸, Dejan Vidanović ⁹, Philippe Caufour ¹⁰, Tirumala Bharani K. Settypalli ¹⁰, Clemens Grünwald-Gruber ¹¹, Reingard Grabherr ²⁰, Adama Diallo ¹², Giovanni Cattoli ¹ and Charles Euloge Lamien ¹⁰

LSDV diagnosis - serology


• Proficiency test 2023

For the detection of <u>specific antibodies to capripox</u> virus in bovine and ovine sera, 33 out of 33 participating laboratories performed satisfactory for all performed tests.

LSDV diagnosis - virology

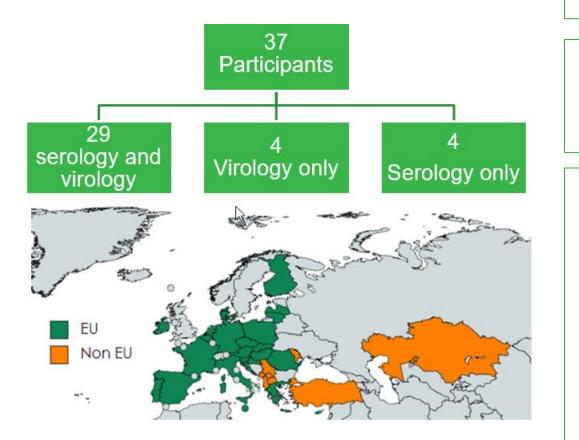


DIVA PCRs are important to differentiate adverse reactions after vaccination from clinical disease induced by virulent field

- strains: Multiple DIVA PCRs exist
 - · All have specific set-up, fit for purpose in specific epidemiological context
 - DIVA test selection depends on knowledge of locally circulating strains
 - EURL/WOAH RL available to provide help with whole genome sequencing

🐡 viruses
Article Development and Validation of a New DIVA Real-Time PCR Allowing to Differentiate Wild-Type Lumpy Skin Disease Virus Strains, Including the Asian Recombinant Strains, from Neethling-Based Vaccine Strains
Andy Haegeman ^{1,*} , Ilse De Leeuw ¹ , Wannes Philips ² and Nick De Regge ¹

LSDV diagnosis - virology


DIVA PCRs are important to differentiate adverse reactions after vaccination from clinical disease induced by virulent field

- strains: Multiple DIVA PCRs exist
 - · All have specific set-up, fit for purpose in specific epidemiological context
 - DIVA test selection depends on knowledge of locally circulating strains
 - EURL/WOAH RL available to provide help with whole genome sequencing

🟶 viruses	MDPI
Allowing to Differenti	dation of a New DIVA Real-Time PCR ate Wild-Type Lumpy Skin Disease Virus Asian Recombinant Strains, Vaccine Strains
Andy Haegeman ^{1,*} , Ilse De Leeuw ¹ , V	Vannes Philips ² and Nick De Regge ¹

LSDV diagnosis - virology

• Proficiency test 2023

Pan-capripox: For the detection of capripox virus nucleic acid detection, the performance of 32 out of 33 laboratories was satisfactory (≥ 90% agreement) for all performed PCRs

Species differentiation: For the differentiation of capripox virus species, the performance of 23 out of 23 participating laboratories performing the test on all samples was satisfactory (≥ 90% agreement)

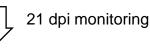
DIVA PCR: For the differentiation of capripox field from vaccine strains, the performance of 13/23 laboratories was satisfactory (≥ 90% agreement)

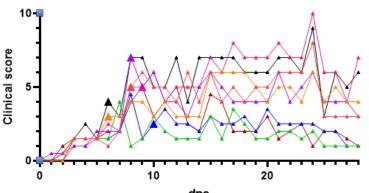
9/23 laboratories used an LSDV specific DIVA and did not classify the SPPV samples. All LSDV samples were correctly classified.

1/23 laboratories used an assay that could make the differentiation for all Capripox viruses. The lab misclassified 4 aliquots (TP2, TP4, TP5 and BP1) and reached a level of agreement of 60% and thus an unsatisfactory result.

Vaccine efficacy against recombinant strain

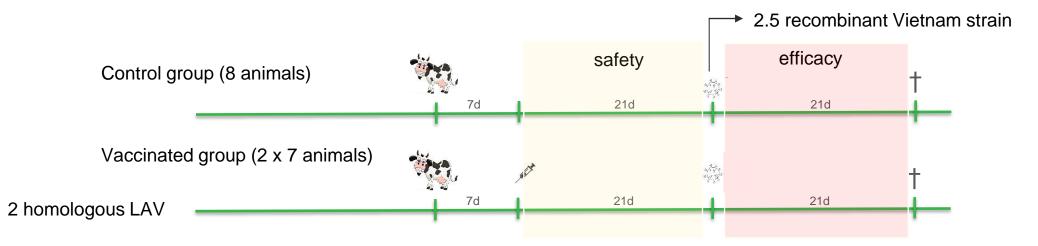
- Homologous LAV provide good protection against the classical wild type strains (clade 1.2)
- Do they also provide protection against recombinant strains (clade 2)?


Challenge model in BSL3 animal facilities:



- Vietnam field isolated (cluster 2.5)
- 5ml intravenous
- 4x0,25ml intradermal

- Fever
- Swelling inoculation side
- Lnn swelling
- General health status
- · Feed intake
- # noduli
- 6/8 animals developed nodules



# Animals	Vaccine	Purpose
7	MSD (Lumpyvax)	Vaccine evaluation
7	OBP	Vaccine evaluation
8	N/A	Control Vaccine and infection model

Vaccine efficacy against recombinant strain

Post vaccination			Post challenge		
Clinical sign	Vaccinated animals	Clinical sign	Control animals	Vaccinated	
Fever	5-7 dpv	Fever	Prolonged	7-8 dpv	
Local reaction	Limited	Local reaction	Strong (75%)	Limited	
Nodules	No	Nodules	- 6 skin - 1 lung	No	
Other	No vaccine viremia	Other	Wide variety	No	

• Homologous live attenuated neethling-based strains provide protection against recombinant (clade 2.5) LSDV strains

Direct transmission of the recombinant strain

- Classical wild type LSDV strains (clade 1.2) are mainly spread by vectors
- Reports indicating non-vector transmission of recombinant strains (clade 2)

Non-vector-borne transmission of lumpy skin disease virus

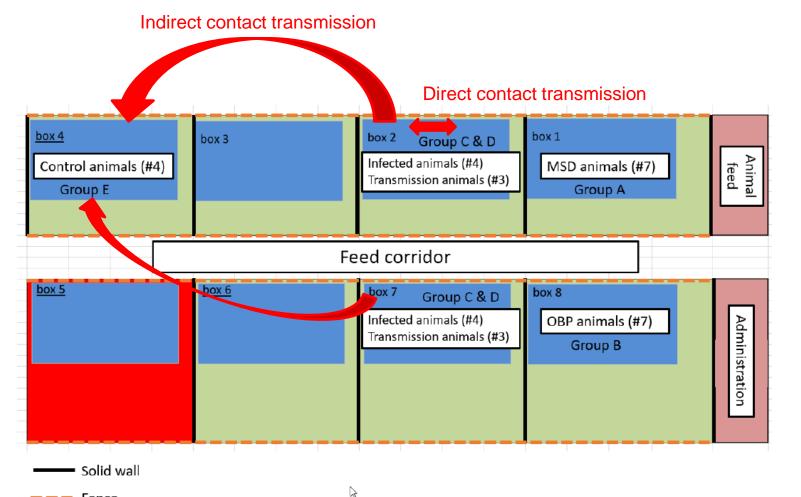
Kononov Aleksandr¹, Byadovskaya Olga¹, Wallace B. David^{2,3}, Prutnikov Pavel¹, Pestova Yana¹, Kononova Svetlana¹, Nesterov Alexander¹, Rusaleev Vladimir¹, Lozovoy Dmitriy¹ & Sprygin Alexander¹⊠

Article

A Recombinant Vaccine-like Strain of Lumpy Skin Disease Virus Causes Low-Level Infection of Cattle through Virus-Inoculated Feed

MDPI

Irina Shumilova ¹, Alexander Nesterov ¹, Olga Byadovskaya ¹, Pavel Prutnikov ¹, David B. Wallace ^{2,3}, Maria Mokeeva ¹, Valeriy Pronin ¹, Aleksandr Kononov ¹, Ilya Chvala ¹ and Alexander Sprygin ^{1,*}


> Front Vet Sci. 2022 Oct 20;9:1001426. doi: 10.3389/fvets.2022.1001426. eCollection 2022.

Experimentally controlled study indicates that the naturally occurring recombinant vaccine-like lumpy skin disease strain Udmurtiya/2019, detected during freezing winter in northern latitudes, is transmitted *via* indirect contact

Alexander Nesterov ¹, Ali Mazloum ¹, Olga Byadovskaya ¹, Irina Shumilova ¹, Antoinette Van Schalkwyk ² ³, Alena Krotova ¹, Vladimir Kirpichenko ⁴, Irina Donnik ⁵, Ilya Chvala ¹, Alexander Sprygin ¹

Direct transmission of the recombinant strain

- Classical wild type LSDV strains (clade1.2) are mainly spread by vectors
- Reports indicating non-vector transmission of recombinant strains (clade 2)

Fence

Direct contact animals

- 6/6 developed nodules
- In general, milder disease compared to needle infected group, except 1
- Viremia detected in 5/6
- 5/6 seroconverted (other animal euthanised before seroconversion)

Indirect contact animals

- 1/4 developed nodules
- Milder disease compared to needle infected group
- Viremia detected in 1/4
- 1/4 seroconverted

- Non-vector borne transmission capacity of recombinant LSDV strains exist and is higher than for classical strains
- Impact on the LSDV epidemiology: spread during winter, more efficient spread within infected herds, even higher importance for biosecurity

Training activities

• LSDV:

- ✓ Training 2 laboratory technicians Algeria (IAEA)
- ✓ LSDV symposium Rome (EuFMD-FAO)
- ✓ LSDV online training course (EuFMD-FAO)
- ✓ LSDV-PPR-FMD meeting Bhutan (GF-TAD)
- ✓ SEE Thrace meeting on TADs (EuFMD)
- ✓ LSDV control strategy ASEAN (WOAH-FAO)
- ✓ TAD Thrace meeting (EuFMD)
- ✓ LSDV central Asia (WOAH)
- ✓ Training 2 laboratory technicians North-Macedonia (EC)

• SPPV/GTPV:

- ✓ EUVET missions (EC)
- ✓ SPPV online training course (EuFMD-FAO)
- ✓ SPPV open access online training (EuFMD)
- ✓ BTSF training SPPV/GTPV (EC)

healthy all life long

Contact

Nick De Regge • nick.deregge@sciensano.be • +32 2 379 06 27

Sciensano • Rue Juliette Wytsmanstraat 14 • 1050 Brussels • Belgium T +32 2 642 51 11 • T Press +32 2 642 54 20 • info@sciensano.be • www.sciensano.be

