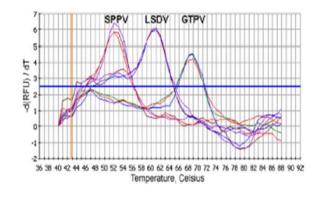
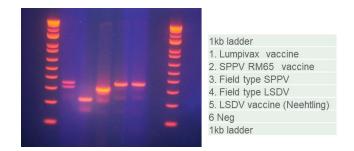
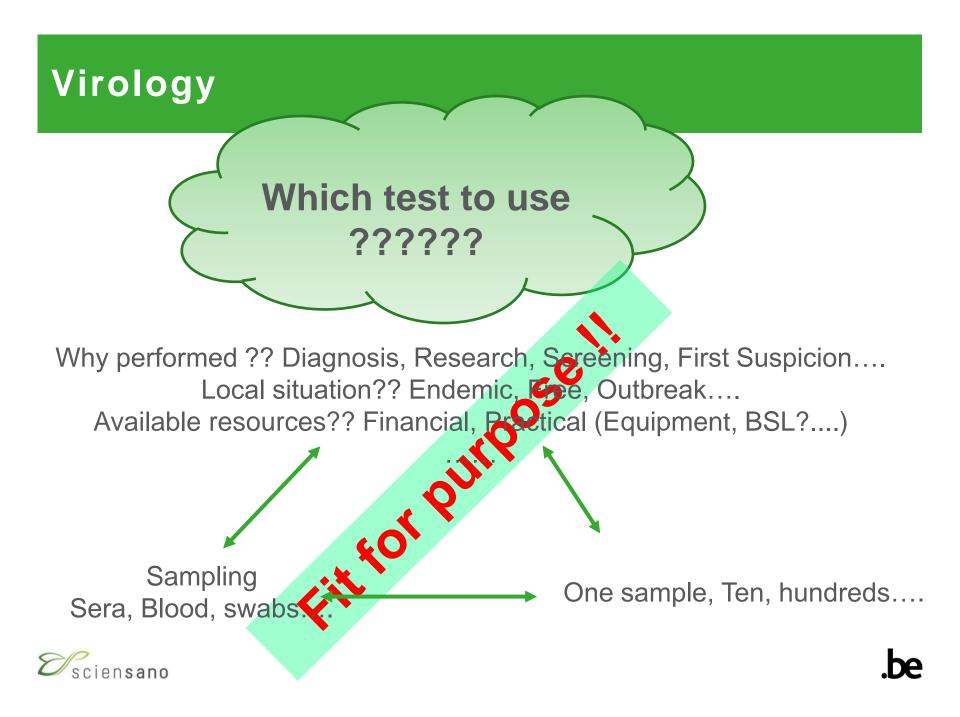

levenslang gezond

LABORATORY TECHNICAL INFORMATION ON LSD


Virology




Laboratory diagnosis - virology

1. Virus isolation

- Proof of presence of live virus \rightarrow Risk analysis
- Obtaining isolate → further characterisation (Phylogeny, FGS...)
- Standard equipment (incubators...)
- Detection limit → timepoints of sampling
- No suited for early detection or screening
- Virus multiplication → BSL3 needed + contamination !!!!
- \rightarrow cleaning SOPs !!
- Time and labour intensive (multiple passages are sometime needed)

A. Embryonated Chicken Eggs (ECE)

Chorio-Allantoic Membrane (CAM)

- High viral loads can be obtained
 - Training and experience is required !

B. Cell line

B.1 Primary cell lines (eg. Fetal lamb kidney or testis)

- Highly (highest ?) sensitive
- Limited number of passages
 - Homogeneity

B. Cell line

B.1 Primary cell lines (eg. Fetal lamb kidney or testis)

B.2 Secondary cell lines

C

- Highly sensitive
- More passage are possible
 - Large variety of cell lines available
 - * OA3.Ts
 - * MDBK
 - VERO
 - BHK21
 - * AVK 58
 - *****

B. Cell line

- B.1 Primary cell lines (eg. Fetal lamb kidney or testis)
- **B.2 Secondary cell lines**

B.3 Detection

B.3.1 Cytopathogenic effect (CPE)

- Simple
- Not always (easily) detected (cfr cell line use)
- Not virus specific !
 - Lab contamination with other virus
 - Unknown pathogens in sample

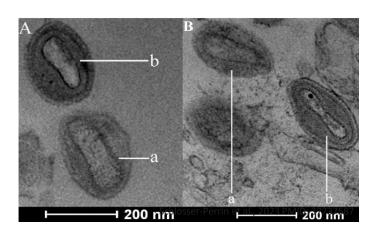
B. Cell line

- B.1 Primary cell lines (eg. Fetal lamb kidney or testis)
- **B.2 Secondary cell lines**

B.3 Detection

B.3.2 Immoperoxidase-based stainig

- Increased specificity and sensitivity
- Additional manipulation



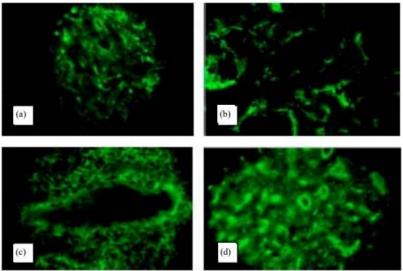
Virology: Virus Detection

2. Virus Detection

A. Electron Microscopy (EM)

• Very Fast

- Low sensitivity
- Special and expensive equipment
- No differentiation beween Capripox genus
- No differentiation with Orthopox virus


Virology: Virus Detection

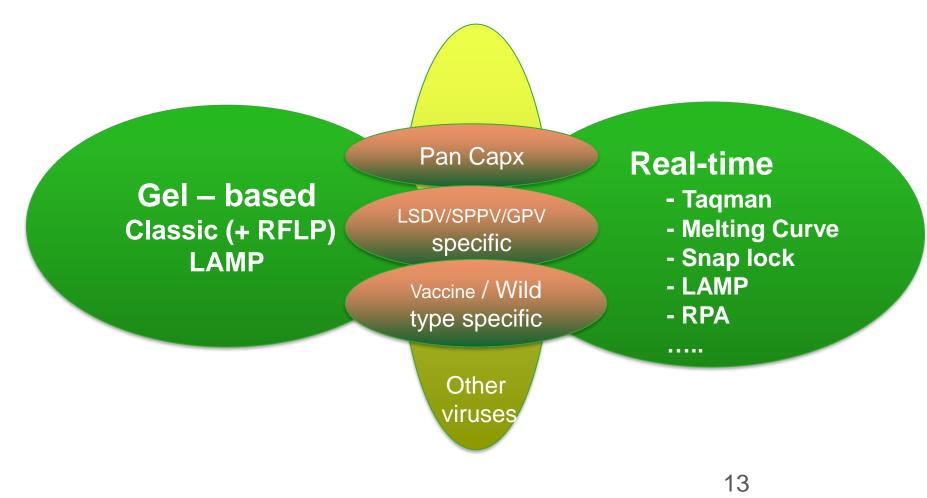
- **2. Virus Detection**
- A. Electron Microscopy (EM)

B. Direct immoperoxidase of immofluorescence methods

- Highly specific
- Equipment
- Low sensitivity

A.A. El-Kenawy and M.S. El-Tholoth, 2011; 10.3923/ijv.2011.158.166

Virology: Virus Detection


- **2. Virus Detection**
- A. Electron Microscopy (EM)

B. Direct immoperoxidase of immofluorescence methods

- C. Agar gel precipitation test (AGPT)
 - Low sensitivity
 - Cross reactivity parapox virus

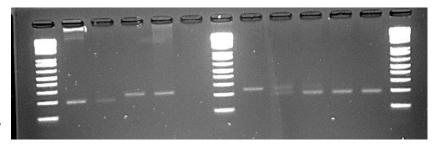
Virology: Virus Genome Detection

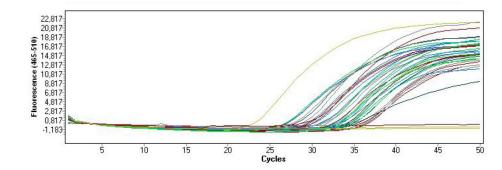
?????????

WHICH PCR TO USE

Which PCR to use

→ NO simple answer !!!!


BUT some things to consider



Which PCR to use

- PCR technique: Gel-based (GB) Versus Real-time (RT)
 - Sensitivity & Specificity: In general RT > GB
 - Speed: RT > GB
 - Lab equipment tech level: RT > GB
 - Reagent costs: RT > GB
 - Traceability: easier with RT
 - Ability of remote access with RT
 - Interpretation issues: RT ~= GB
 - Personal training RT > GB

Which PCR to use

- PCR technique: Gel-based (GB) Versus Real-time (RT)
- Fit for purpose !
 - Do I need high sensitivity ?
 - First case, suspicion, import: YES
 - Epidemic screening or large scale screening : probably Not
 - I will be testing mainly lesions and scabs: No
 - $\circ~$ I will be testing blood, swabs: Yes
 - 0
 - What are the financial implications
 - Is the tech capacity and trained personal available
 - Can I get the necessary materials in time

→ Example: during the Covid crisis: RT plates, pipet tips often

Virology and Sampling

- What is the purpose ? Diagnosis
- Wound crusts \rightarrow Ideal to confirm clinical picture
 - Is suited for virus isolation and PCR due to high viral load and remains long time positive
 - Easy to collect
 - No need for the most sensitive test
 - Extra care is needed in sampling handling and analysis → High risk of contamination in the lab !! Extra cleaning is warranted ! Changing gloves also in the field !
 - Nodule and skin lesion
 - Similar remarks but you need to take a biopsy !
 - \rightarrow Change biopsy needles after use !

Sampling

- What is the purpose ? Diagnosis
 - EDTA Blood
 - Is suited for PCR (and virus isolation)
 - Easy to collect
 - Strength of viremia is more time dependent !
 - \rightarrow You can have nodules while the virus is cleared from the animal
 - \rightarrow Sensitivity is more important
 - Swabs (buccal, nasal...)
 - Same remarks as for blood

Sampling

- **EDTA Blood** •
 - No pretreatment required
- Examine blood quality is tracing important, linked to PCR results ?
 - Non-coagulated
 - Fresh blood

- Important for collecting EDTA blood! ۲
 - Blood tubes: check expiration date
 - Shaking after blood collection (EDTA mixed with blood)

Sampling

- Tissues, organs (cfr slaughterhouse)...
 - Cut small pieces and put in Eppendorf tube
 - Attention:
 - Large pieces are difficult to homogenize:
 - Membranes and connective tissues: hard to homogenize and digest
 - Fat residues can cause problems during subsequent seps

