Introduction to **Systems Thinking for** Wildlife Disease Management

Daniel Walsh¹ and Thierry Work²

¹USGS-Montana Cooperative Research Unit

²USGS National Wildlife Health Center-WOAH Collaborating Centre

World

for Animal

Organisation Organisation mondiale de la santé animale

Organización Mundial de Sanidad Animal

6th cycle Training of National Wildlife Focal Points World Organisation for Animal Health **European Region**

Impediments to managing disease

- Development/use of techniques can be resource intensive (e.g., vaccines, fencing, culling)
- Can be difficult to disperse to wild animals (e.g., vaccines)
- Some pathogens can persist in the environment
- Some control mechanisms (e.g., insecticides) can have serious environmental side effects or result in selective pressure for resistant organisms
- Actions can sometimes be counterproductive and spread the disease to new areas (e.g., dispersal and density reduction)
- Actions can be highly controversial (e.g., depopulation of wildlife)

World

Health

for Animal

Organisation Organización Organisation mondiale Mundial de la santé de Sanidad Animal animale

The hurdles to management are not linear problems

-lealth

for Animal

Organización Organisation mondiale Mundial de la santé de Sanidad animale Animal

What is systems thinking?

System: A set of interacting elements that function together to produce a certain outcome

for Anımal -lealth

Organización Organisation Organisation mondiale de la santé de Sanidad animale Animal

Systems can be simple

- Simple systems have clear cause and effect
 - Reductionist techniques work well for problem-solving
 - Reductionist: Reducing to components

Vorld

lealth

Organisation

or Anima

Organisation Organización mondiale Mundial de la santé de Sanidad animale Animal

Systems can be complex

- Complex systems lack clear cause-effect relationship
 - Holistic approaches to problem-solving are needed
 - Holistic: Relating to the whole rather than the parts
 - Can create persistent problems due to system stability and resistance to change
 - Often involve social, economic, or political factors

World Organisation

Health

for Animal

Organisation Organización mondiale Mundial de la santé de Sanidad animale Animal

System Behavior

The behavior of the system cannot be

known by only knowing the elements of the system.

- Donella Meadows

Norld Organisation

lealth

for Anima

Organisation Organización mondiale Mundial de la santé de Sanidad animale Animal

Benefits of Systems Thinking

- Improves understanding of complex problems
- Highlights static and dynamic elements (relationships and behavior)
- Allows discovery of new intervention points
- Help recognize hidden and unintended consequences
- Help push behavioral change
- Help look for small changes that can have meaningful impacts
- Improves understanding of complex problems

Health

Organisation Organización Organisation mondiale for Animal de la santé animale

When Should We Use **Systems Thinking?**

Mundial de Sanidad

Animal

Organisation

or Anıma Tealth Organisation Organización mondiale Mundial de la santé de Sanidad animale Animal

"Wicked" Problems

- The problem is longstanding and attempts to solve it have failed
- There are multiple perspectives on the cause of the problem and what should be done
- Diverse stakeholders find it difficult to align their efforts; people are working on many different elements at the same time
- Actions may have unintended consequences

 $https://www.intapp.com/blog_posts/tackling-wicked-problem-firm-leadership-continued-success-conundrum-part-1/$

Health

Organisation

for Animal

Organisation Organización mondiale Mundial de la santé de Sanidad animale Animal

Is management of wildlife disease a wicked problem?

- Drivers of wildlife disease are complex and often involve interconnected ecological and social factors
- Stakeholders are diverse
- Management actions can have unintended consequences

Health

for Animal

Organisation Organización Organisation mondiale Mundial de la santé de Sanidad animale Animal

What are some systems thinking tools?

- Iceberg model
- Causal loop diagram
- Flight simulator

-lealth

Organisation

for Animal

Organisation Organización mondiale Mundial de la santé de Sanidad animale Animal

Tool #1: Iceberg Model

Purpose: To uncover the root causes of an event by identifying the underlying patterns of behavior, supporting structures, and mental models.

Health

Organisation Organización mondiale de la santé de Sanidad animale Animal

Example: CDV in Tigers

HYPOTHETICAL SCENARIO FOR A FICTIONAL NATIONAL PARK (PLACE X)

- Events
 - Tiger mortality event from canine distemper virus (CDV) in Place X
- Patterns
 - Cases of CDV in tigers have increased over the past 5 years in Place X
- Structures
 - Audience: What are some structures that could lead to this pattern?
- Mental models
 - Audience: What are some mental models that could lead to these structures or patterns?

Example: CDV in Tigers

HYPOTHETICAL SCENARIO FOR A FICTIONAL NATIONAL PARK IN ASIA (PLACE X)

- Events
 - Tiger mortality event from canine distemper virus (CDV) in Place X
- Patterns
 - Cases of CDV in tigers have increased over the past 5 years in Place X
- Structures
 - Hunting with dogs is common on public lands near Place X
 - A major road runs past an unmonitored access point to Place X
- Mental models
 - People should be able to use public lands for their own benefit
 - Enforcing park access rules is not an important use of Place X funds

-lealth

for Anımal

Organización Organisation mondiale de la santé de Sanidad animale

Tool #2: Causal Loop Diagram

- Conceptually model dynamic systems
 - Allows quantitative modeling
- Useful for uncovering feedback loops
- May be able to identify novel intervention points in the system

Organisation

for Anımal Health Organisation Organización mondiale Mundial de la santé de Sanidad animale Animal

Balancing and Reinforcing Feedback Loops

- Balancing loops (B)
 - Negative feedback loops
 - Self corrective
 - Self-regulating
 - Seek stability; maintain condition or state
 - Primary source of resistance to change
- Reinforcing loops (R)
 - Positive feedback loops
 - Vicious cycles that worsen the problem
 - Virtuous cycles that generate growth

Health

Organisation Organización mondiale Mundial de Sanidad de la santé Animal animale

Test: Balancing or Reinforcing Loops?

Health

Organisation Organización mondiale Mundial de la santé de Sanidad Animal animale

Test: Balancing or Reinforcing Loops?

Photo credit: Protracted learning

Health

Organisation

for Anımal

Organisation Organización mondiale Mundial de la santé de Sanidad animale Animal

System Delays

- System delays occur because it takes time to
 - Recognize the current state
 - Decide which actions to take
 - Implement actions
 - Change the current state by an action
- System delays create unintended consequences

Health

for Anımal

Organización Organisation Organisation mondiale de la santé de Sanidad animale Animal

Case example: Rabies

Preventive Veterinary Medicine Volume 203, June 2022, 105623

Using causal loop analysis to explore pathways for zoonosis control in low-income setting: The case of dog rabies vaccination in Burkina Faso

Madi Savadogo ^{a, c, d} 🙁 🖾, Dimitri Renmans ^b, Rianatou Bada Alambedji ^c, Zékiba Tarnagda ^d Nicolas Antoine-Moussiaux *

R1: awareness, community engagement, accessibility to vaccination-related information, dog vaccination, and sensitization by animal health workers : R2: awareness, misconceptions, killing of biting dogs, trust in vaccination services, dog vaccination, and sensitization by animal health workers; R3: awareness, and misconceptions; R4: awareness, social pressure, dog roaming, dog handling ease, dog vaccination, and sensitization by animal health workers; B1: dog vaccination, dog roaming, and dog handling ease ; B2 : dog vaccination, dog roaming, dog bite incidence, killing of biting dogs, and trust in vaccination services

Organisation Organización mondiale Mundial de la santé de Sanidad animale Animal

Tool #3: Mangement Flight Simulator

- Simulated environment based on quantitative systems mapping
- Explore consequences of different strategies
- Learn from experience

ය 🔍 🚽 එ 🗉

Assessing tradeoffs and making decisions in complex systems

Health

for Animal

Organisation Organización Organisation mondiale Mundial de Sanidad de la santé Animal animale

Leverage points

Interventions in the system capable of changing trends and

patterns

Organisation Organización mondiale Mundial de la santé de Sanidad animale Animal

THE ICEBERG MODEL

Leverage Points

- Located towards the bottom of the iceberg model
- Identifying them can lead to
 - Changing cause-effect relationships
 - Aligning system behavior with desired purpose
- Possible actions
 - Stopping or doing less of something
 - Starting or doing more of something
 - Addressing significant delays

WorldOrganisationOrganisationmondialefor Animalde la santéHealthanimale

Organización

Mundial de Sanidad

Animal

Health

Organisation Organisation mondiale for Anımal de la santé animale

Adaptive Management

Organización

de Sanidad

Animal

- Adjust policies and practices by learning from the outcome of previously used policies and practices
- **Crucial for addressing wicked problems!**

Image credit: https://www.essa.com/approach/

Questions?