

EU Reference Laboratory for Capripox viruses

Funded by the European Union healthy all life long

EU Project DEFEND activities of importance to LSD control

https://defend2020.eu/

Pip Beard Coordinator The Pirbright Institute UK <u>Kris De Clercq</u> Co-coordinator SCIENSANO Belgium

Andy Haegeman, Laurent Mostin, Charlotte Sohier, Steven Van Borm,

Wannes Philips, Ilse De Leeuw, Nick De Regge

GF-TADs Europe LSD SGE – 2 March 2023

Consortium: Who is involved?

EUROPEAN COMMISSION

Research Executive Agency Sustainable Resources for Food Security and Growth

> Research and Innovation action NUMBER — 773701 — DEFEND

Project title: Addressing the dual emerging threats of African Swine Fever and Lumpy Skin Disease in Europe (DEFEND)

The aim:

To understand the drivers of the emergence LSDV and ASFV, and generating research outputs which supports rapid responses by decisionmakers and underpin novel diagnostic tools and vaccines.

Work-Packages

Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health Institut für Epidemiologie

WP1: Risk analysis framework

<u>Aim</u>: to develop risk assessments, taking factors into account that might play a role in the emergence of ASF or LSD in Europe

LSD

		-
Rank	Category	Score
1	Immune status	9.27
2	Movement/ Transport	9.00
3	Disease control	8.50
4	Environmental factors	8.00
5	Biosecurity	7.90
6	Vector properties	5.88
7	Virus properties (LSDV)	5.12
8	Socioeconomic factors [*]	4.00
9	Husbandry system	3.90
10	$Networks^*$	3.50
11	Surveillance	2.00
12	Cattle properties*	0.75

viruses ASF

Systematic Review

Identification of Risk Factors for African Swine Fever: A Systematic Review

Hannes Bergmann ^{1,*}[©], Johanna Dups-Bergmann ¹[©], Katja Schulz ¹[©], Carolina Probst ¹[©], Laura Zani ²[©], Melina Fischer ³, Jörn Gethmann ¹[©], Nicolai Denzin ¹, Sandra Blome ³[©], Franz J. Conraths ¹[©] and Carola Sauter-Louis ¹[©]

MDPI

Revieu

A Review of Environmental Risk Factors for African Swine Fever in European Wild Boar

Hannes Bergmann *⁽⁰⁾, Katja Schulz ⁽⁰⁾, Franz J. Conraths ⁽⁰⁾ and Carola Sauter-Louis ⁽⁰⁾

WP 2: Phylogenetics of LSDV and ASFV

- Increase global resolution, esp. European incursion 2015-2017.
 Low variation → need whole genome
- Whole genomes \rightarrow evaluate existing LSDV molecular diagnostics.

R	Region	Genomes completed (Sanger confirmation ongoing)	Variable position detected within region	ons n	Variation dispersed over genome: cannot		
A	LBANIA	6	7		target region for		
Ċ	GREECE	6	5		partial sequencing		
Ν	I.MACEDONIA	2	2				
S	ERBIA	4 (+1)	4	Grov	wing number of public omes: Russia; Vietnam;		
B	BULGARIA	(1)		gend			
K	AZACHSTAN	(1)		Chin	ina; Namibia; India ; ailand; Nigeria ;		
19	SRAEL	(1)		Thai			
E	UROPE (+)	22	19				

Spatiotemporal phylogenetic reconstruction

First exploration using methods for slowly evolving pathogens (bacteria): SNP haplotype network.

(Dellicour et al., Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nature Communications, 2020)

WP 3 "Conflict, migration and virus spread"

• **Objective:** to assess how conflicts, insecurity situation and migrations act as drivers for animal disease emergence and spread.

Conference Paper · May 2022

A methodology to identify socio-economic factors and movements impacting on ASF and LSD in rural and insecure areas. Angeloni et al., 2022

> Giorgia Angeloni, <u>giorgia.angeloni@gmail.com</u>; <u>info@veterinarisenzafrontiere.it</u>

Michele Nori, michele.nori@eui.eu

WP 4: Transmission of LSDV

Experimental evidence of mechanical lumpy skin disease virus transmission by *Stomoxys calcitrans* biting flies and *Haematopota spp*. horseflies SCIENTIFIC REPORTS

natureresearch

C. Sohier^{1,3*}, A. Haegeman^{1,3}, L. Mostin¹, I. De Leeuw¹, W. Van Campe¹, A. De Vleeschauwer¹, E. S. M. Tuppurainen², T. van den Berg¹, N. De Regge¹ & K. De Clercq¹

 Mechanical transmission has been demonstrated to occur by blood-feeding insects and some African tick species – no data available on vector potential European ticks restriction zones need to cover the flying distance of vectors (50km)

DEFEND - WP4: Transmission of LSDV

Task 4.2: In vivo feeding: In vivo transmission: setup

Donors (n=10)

Acceptors

<u>Mass exposure</u> 2 batches Each batch 2/3 days ~350 flies per animal Low exposure 1 day 1 cage of 20 flies

Preliminary results: Transmission from low exposure similar to mass exposure !!

.be

Transmission direct / indirect / semen

- Direct contact or Indirect contact via shared water and feed troughs and contaminated environment ?
- Direct/Indirect contact transmission with recombinant LSDV strains

SCIENTIFIC
REPORTSNon-vector-borne transmission of
lumpy skin disease virus
Kononov Aleksandr¹, Byadoyskaya Olga¹, Wallace B, David^{2,3}, Prutnikov Pavel¹,

natureresearch

Kononov Aleksandr¹, Byadovskaya Olga¹, Wallace B. David^{2,3}, Prutnikov Pavel¹, Pestova Yana¹, Kononova Svetlana¹, Nesterov Alexander¹, Rusaleev Vladimir¹, Lozovoy Dmitriy¹ & Sprygin Alexander¹ ⊠

- <u>Task 4.5</u>: Evaluation of transmission by semen
 - ✓ LSDV positive semen obtained from an LSDV clinical bull but No transmission experimentally

DEFEND – WP5: Subclinical infection with LSDV

Infected Donors without clinical signs = subclinical

Main conclusion / remarks

- Transmission from sub-clinical animals is possible
- One acceptors became again sub-clinical infected !
 → dangerous cycle !!
- Eliminating only clinical diseased LSD animals is insufficient → probability of reappearance of LSD is high

WP 8: Diagnostic tools for LSD

Objectives

- To study the immune response to lumpy skin disease virus and the difference between infected and vaccinated animals
- To use this knowledge to improve serological tests (humoral immunity) and interferon gamma assays (cellular immunity).

Results

- ✓ Several new monoclonal antibodies (Mab) against LSDV developed
- ✓ New serological tests based on Mab developed
- Several proteins synthesized for stimulation of cells in the interferon gamma assays
- ✓ DIVA assays under evaluation

WP 9: Optimising LSD vaccine strategies

Duration of immunity: estimated by infection of vaccinated animals after 6m, 12m and 18months

Live attenuated vaccine

- No nodule formation
- Almost no clinical scoring

Inactivated vaccine

- Nodule formation in LSDV Inac 12m (2/6)
- Clinical scoring in 2 animals LSDV Inac 12m

BILL&MELINDA

GATES foundation

Vscien**sano**

Haegeman et al. (2023). Duration of immunity induced after vaccination of cattle with a live attenuated or inactivated Lumpy skin disease virus vaccine. Microorganisms 2023, 11, 210.

WP 10: Host determinants of lumpy skin disease (LSD) resistance and susceptibility

Aim

 To quantify the genetic contribution to host susceptibility or resistance and evaluate different strategies to improve host resistance

Preliminary Results:

A Genome-wide association (GWAS) study showed that there are genomic signatures related to LSD susceptibility on chromosomes 4 and 23.

There are significant differentially expressed (SDE) genes between LSD symptomatic and asymptomatic animals.

Day 7 post infection is the best time point.

Van Borm et al. (2022). Host variation in susceptibility to lumpy skin disease: gene expression analyses of experimentally infected cows. Proceedings of 12th World Congress on Genetics Applied to Livestock Production. DOI: 10.3920/978-90-8686-940-4_154.

WP11: Next generation LSD vaccines

<u>Aim</u>: Construct a subunit vaccine designed to stimulate humoral immune response to LSDV

Preliminary Results:

- ✓ Vaccine construct made.
- ✓ Immune response (antibodies) against construct after injection.
- ✓ After challenge: no protection yet.
- ✓ Future: Develop DIVA ELISA

www.pirbright.ac.uk

Thanks to the EC for the support

