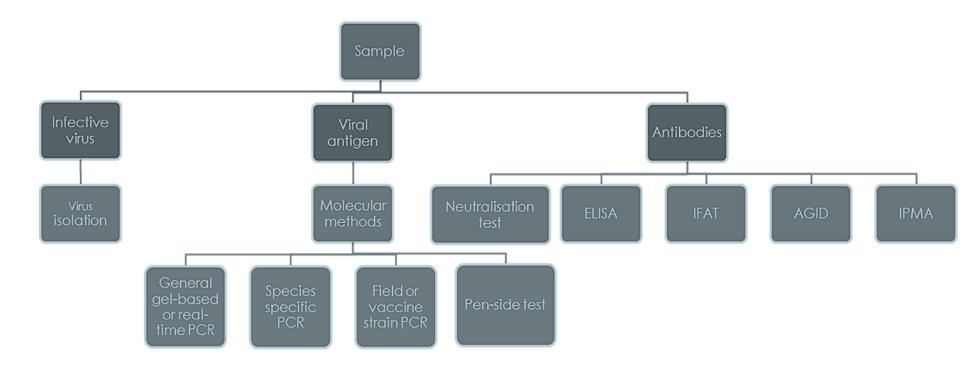
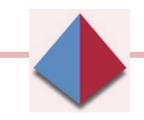
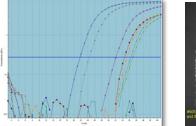

Standing Group of Experts on Lumpy Skin Disease in Europe under the GF-TADs umbrella

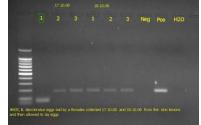
> First meeting (LSD1) Brussels, Belgium, 4-5 July 2016

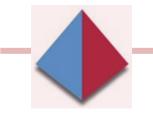

Diagnostic methods for Lumpy skin disease virus LSD Expert: Dr Eeva Tuppurainen


General characteristics of LSDV affecting laboratory diagnostics

- Capripoxvirus genus comprises lumpy skin disease virus (LSDV), sheeppox virus (SPPV) and goatpox virus (GTPV) which are closely related but phylogenetically distinct
- Large (294±20 nm and 262±2 nm), double-stranded DNA virus
- Stable genome (151 kbp, 156 genes) Nucleotide changes cannot be used for example tracing farm-to-farm spread of the virus
- Virus can be with or without an envelope both are infectious but antigenically different
- Sensitive to most disinfectants

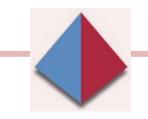

Detection of the antigen/infectious virus and antibodies against LSDV





General Capripoxvirus gel-based and real-time PCR methods

- Widely used basic methods
- Several conventional and real-time PCR methods have been validated
- Real-time PCR is faster, more sensitive and less prone to contamination
- A gel-based PCR is described in the OIE manual LSD chapter (Ireland and Binepal 1998, Tuppurainen *et al* 2005)
- Bowden *et al* 2008 assay was validated by Stubbs *et al* 2010
- Haegeman *et al* 2013
- Gel-based PCR is reliable sensitive and still a good back-up method in every lab



Multiplex PCRs detecting CaPV simultaneously with other viruses

- One-step multiplex real-time qPCR assay
- For simultaneous detection of peste des petits ruminants (PPR) virus, CaPV, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp.) capripneumoniae (Settypalli *et al* 2016)
- Multiplex PCR and TagMan based duplex real-time PCR for detecting ORF and SPPV and GTPV (Venkatesan *et al* 2014 a,b)

Species-specific molecular assays - A gel-based method - differentiates SPPV from LSDV/GTPV – useful when SPPV vaccine used in cattle against LSDV

Contents lists available at ScienceDirect

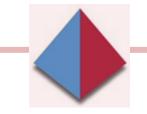
journal homepage: www.elsevier.com/locate/vetmic

Veterinary Microbiology

Research article

Use of the *Capripoxvirus* homologue of *Vaccinia virus* 30 kDa RNA polymerase subunit (RPO30) gene as a novel diagnostic and genotyping target: Development of a classical PCR method to differentiate *Goat poxvirus* from *Sheep poxvirus*

Charles Euloge Lamien ^a, Christian Le Goff^b, Roland Silber^c, David B. Wallace^{d.e}, Velý Gulyaz^I, Eeva Tuppurainen^g, Hafsa Madani^h, Philippe Caufour^b, Tajelser Adamⁱ, Mehdi El Harrak^J, Antony George Luckins^a, Emmanuel Albina^b, Adama Diallo^{a,*}

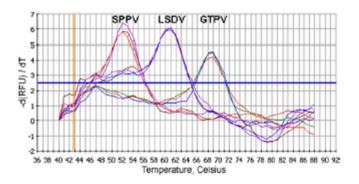

Step 1 (1X):	95°C for 4min
Step 2 (40 cycles):	95ºC for 30sec, 55ºC for 30sec and 72ºC for 30sec
Step 3 (1X):	72ºC for 7min
Step 4:	Keep at 4ºC

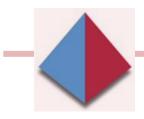
	Volume for one tube(ul)	Final concentration
IQ supermix (BioRad)	10	
Primer SpGpRNApol F (5 pmole/ul)	2	500nM
Primer SpGpRNAPol R (5 pmole/ul)	2	500nM
Water	4	
DNA	2	
Total	20	

Primer SpGpRNApol F (5 pmole/ul)	5'-TCTATGTCTTGATATGTGGTGGTAG-3'
Primer SpGpRNAPol R (5 pmole/ul)	5'-AGTGATTAGGTGGTGTATTATTTTCC-3'

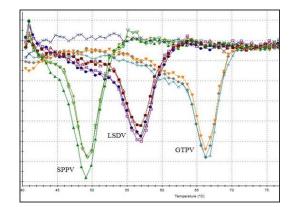
Size of the amplicon

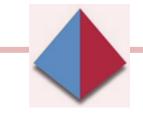
LSDV /GTPV	172bp
SPPV	151bp




Fluorescence Resonance Energy Transfer (FRET) real-time PCR

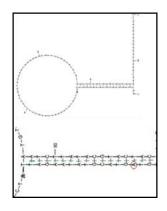
- Targets the G-Protein Coupled Chemokine Receptor (GPCR)—gene
- By using Fluorescence Melting Curve Analysis (FMCA) the assay detects different melting point temperatures of LSDV, SPPV and GTPV
- Requires a real-time PCR machine which can accommodate the FRET technology
- FRET channel: FAM excitation/Cy5 emission


and differentiation of capripoxviruses Charles Euloge Lamien^a, Mamadou Lelenta^a, Wilfried Goger^b, Roland Silber^c, Eeva Tuppurainen^d, Mirta Matijevic^e, Antony George Luckins^a, Adama Diallo^{a,*}



Inverted species-specific FRET assay

- Allows differentiation using the normal PCR channels (Cy5 -channel)
- Uses the same primers
- Slightly altered labelling of the donor probe
- Publication shortly
- Contact info Dr Charles Lamien, IAEA (C.Lamien@iaea.org)

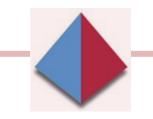


OPEN a ACCESS Freely available online

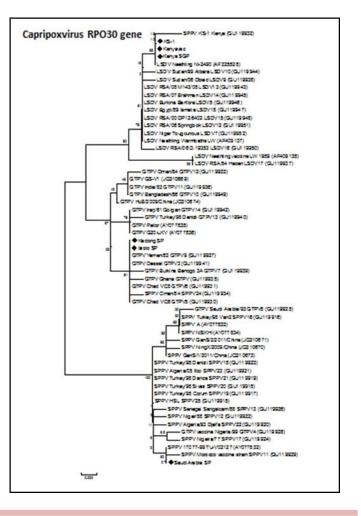
PLOS ONE

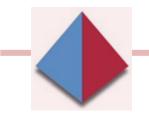
Development of a Cost-Effective Method for Capripoxvirus Genotyping Using Snapback Primer and dsDNA Intercalating Dye

Esayas Gelaye^{1,5,6}, Charles Euloge Lamien¹*, Roland Silber², Eeva S. M. Tuppurainen³, Reingard Grabherr⁴, Adama Diallo¹

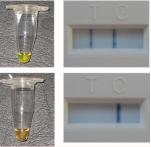


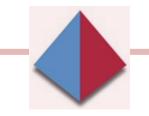
- Targets a 96bp fragment of the RPO30 –gene
- Snapback tail added to the 5' end of the forward primer: 100% match with GTPV, T:A mismatch with SPPV and T:G with LSDV
- Snapback primer serves as primer and a probe
- Intercalating dye (EvaGreen) between double stranded DNA bonds which is released when the bonds break during melting
- Two melting peaks: one for the stem and one for the amplicon High Resolution Melting points and Fluorescent melting curve analysis (FMCA)


Molecular DIVA assays differentiating the vaccine from the field strain


- Needed in case clinical signs are detected in vaccinated herds
- The first assay based on the detection of a 27 nucleotide difference in the extracellular enveloped virion -gene between virulent and attenuated LSDV has been published (Menasherow *et al* 2014)
- High-resolution melting (HRM) assay for LSDV (Menasherow *et al* 2015)
- Gel-based and real-time PCR methods for SPPV (Haegeman *et al* 2015)
- Commercial DIVA PCR kit for LSDV currently available

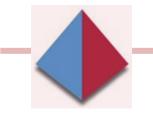
Sequencing tool for phylogenetic studies


- Phylogenetic grouping based on host range genes
- G-protein coupled chemokine receptor
- RNA polymerase subunit (RPO30) (Gelaye *et al* 2015)
- Not expensive by commercial companies
- Data analysing requires highly specific training
- Therefore not suitable for routine screening in many laboratories

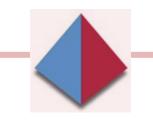


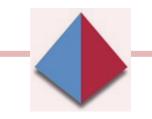
LAMP assays for LSDV

- Two basic LAMP assays for the detection of CaPV in general by Murray *et al* 2013 and Das *et al* 2013
- Two species-specific for SPPV and GTPV by Zhao *et al* 2014 and Venkatesan *et al* 2016
- Fast method as isothermal amplification takes less than an hour
- Need to overcome a problem how to do the extraction of the samples in the field settings
- Result are based on cloudiness or colour changes which may complicate interpretation
- Great potential to develop the method into lateral flow device (LFD) pen-side assay

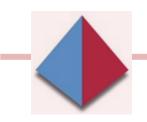


Pen-side tests


- The first PCR method suitable for portable thermocycler has been described by Armson *et al* 2015
- Detects LSDV, SPPV and GTPV
- Validated real-time PCR method by Bowden *et al* (2008) was slightly modified and set up for the machine
- Easy to use in challenging environmental conditions, car cigarette lighter used as a power source
- Freeze dried reagents no cold-chain required
- Easy sample collection: blood in EDTA, scabs from skin lesions, saliva, eye and nasal discharge
- No separate DNA extraction required

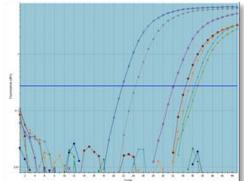

Serology

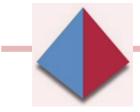
- Immunity against LSDV is predominantly cell-based but also humoral
- Infected animals develop different kind of antibodies depending on the stage of infection
- Antibodies against LSDV can usually be detected approximately 6 months post outbreak then eventually decreasing below detectable levels
- All serological tests available are for the CaPV group diagnosis (serum/virus neutralization, fluorescent antibody, indirect fluorescent antibody or agar gel immunodiffusion tests)
- None of them is optimal for use as a primary assay nor for testing large numbers of samples



- Neutralization test (gold standard) is reliable and in slightly modified format it can be used also for serological surveys (by using only two lowest dilutions of the serum)
- LSDV labelled with fluorescence marker can be used in SNT reducing the time required to read SNT
- Indirect ELISAs based on killed whole virus (Babiuk et al 2009) recombinant antigens (Bowden et al 2009) or synthetic peptides (Bhanot et al 2009; Tian et al 2010) have been developed
- AGID (cross-reacts with parapox) and IFAT (background staining, requires careful optimization and validation)

Novel ELISA


- Evaluation of the performance of a promising ELISA (Bowden et al., CSIRO, Australia) has been carried out using a large number of serum samples
- Detects antibodies approximately three months post-infection
- Performs well on herd/flock level
- Sensitivity is clearly better than SNT
- Vaccinated animals and individuals with mild disease show low antibody levels may not be detected


Thank you for your attention!

Dr Eeva S.M. Tuppurainen, DVM, MSc, PhD, MRCVS Veterinary Expertise for Controlling Lumpy skin disease, Sheeppox and Goatpox Tel. +44 79 63828625 tuppurainene@gmail.com

