

### **Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region** under the GF-TADs umbrella

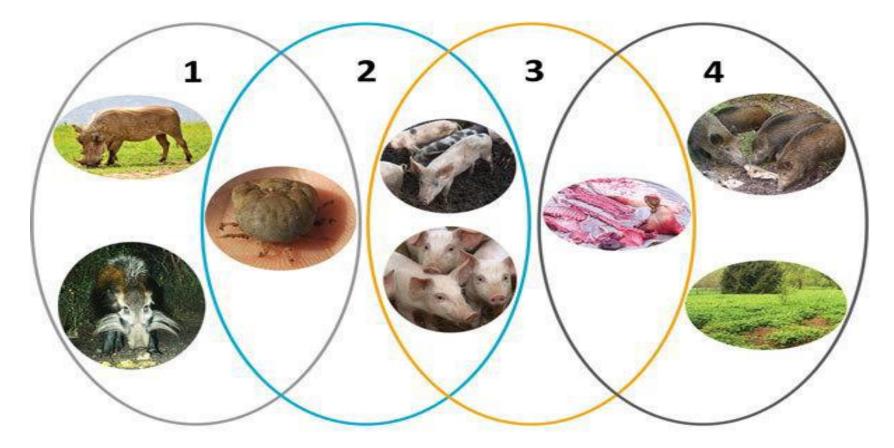
#### Eleventh meeting (SGE ASF11) - Warsaw, Poland, 24-25 September 2018

# Update on the domestic / Wild interface in ASF infected areas

Alexey Igolkin

# ASF reservoir and susceptible animals

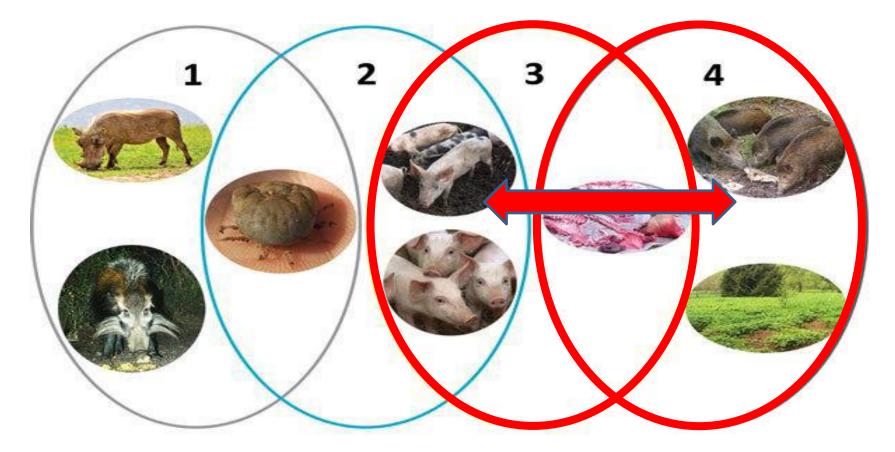



O. erraticus, spread in Iberian (Spain)

O. moubata spread in the south and East of Africa



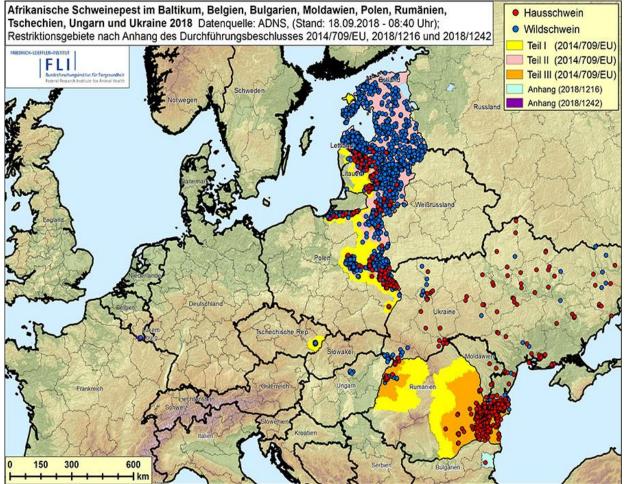
Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region under the GF-TADs umbrella


# Epidemiological cycles of ASF and main transmission agents:



Chenaiset al., EmergInfect Dis. 2018 Apr;24(4):810-812.




# Epidemiological cycles of ASF and main transmission agents:



Chenaiset al., EmergInfectDis. 2018 Apr;24(4):810-812.



## **ASF epidemic situation in European Region**

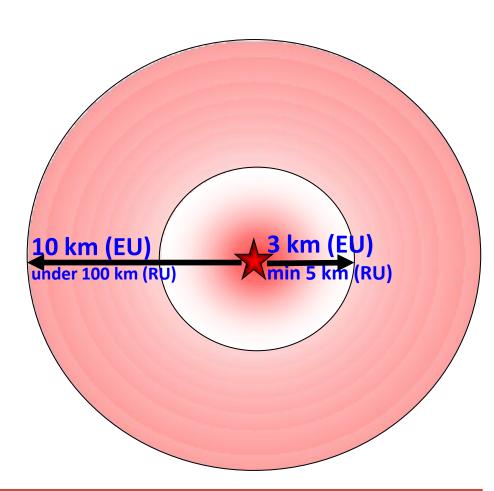


- ASF disease dynamics have proven to be complex and difficult to control in WB

DP ASF prevalence remains
 5%

- a pattern of local persistence

slower than expected dynamic spatial spread is evident, estimated at an average of 1–2 km/month


(EFSA, 2017)



### **Guidance on ASF prevention and eradication**



✓ Stamping-out
 ✓ Quarantine
 ✓ Zoning
 ✓ Monitoring





## Factors affecting the wild boar and its habitat



- Good/Bad for WB
- Climate (warm/long cold winter)
- Geography (forest and plains/vast rivers)
- Ecology (crop fields/ infection diseases)
- Management (feeding, lack of awareness/ eradication, hunting, barriers, biosafety measur
- Demography (low and unpopulated areas /high people density, wide roads)
- Behavior





## Way of transmission ASF in wild boars

- Direct transmission between infected and susceptible wild boar
- Indirect transmission through carcasses in the habitat
- Indirect transmission through other potential vectors?
- Indirect transmission through the environment?



# Direct transmission between infected and susceptible wild boar

What do we need to know?

- EXCRETION: Virus excretion by urine/saliva low-> low dose
- Contacts within one group of animals high -> possibly higher dose
- Transmission between groups? Rather low... (Iglesias et al., 2015; Pietschmann et al., 2015)



### The level of accumulation of the virus in animal fluids

Quantification of African swine fever virus (ASFV) in blood, secretions and excretions of infected domestic pigs with currently circulating strains in Caucasus, Ea

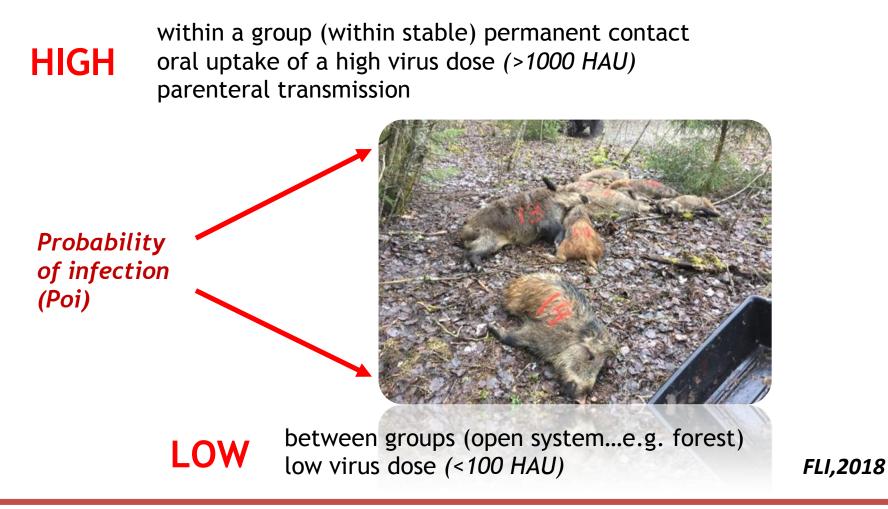
| Sample type  | ASFV strain                                       | Inoculation                                           | Maximum of virus titres detected                                                | References                |
|--------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------|
| Blood        | Lithuania LT14/1490 isolated from wild boar       | Intramuscular 10 HAD <sub>50</sub> /ml                | 10 <sup>6.4</sup> to 10 <sup>8.7</sup> HAD <sub>50</sub> /ml at 6 dpi           | Gallardo and others 2015a |
|              |                                                   | Contact                                               | 10 <sup>6.4</sup> to 10 <sup>8.7</sup> 7 HAD <sub>50</sub> /ml at 14 dpi        |                           |
|              | Georgia 2007/1 isolated from domestic pig         | Intramuscular 10 <sup>2</sup> HAD <sub>50</sub> /ml   | 10 <sup>6</sup> to 10 <sup>8</sup> HAD <sub>50</sub> /ml from 5 dpi             | Guinat and others 2014    |
|              |                                                   | Contact                                               | 10 <sup>6</sup> to 10 <sup>8</sup> HAD <sub>50</sub> /ml from 10 dpi            |                           |
|              | Russia Kashino 04/13 isolated from wild boar      | Intranasal 5×10 <sup>3</sup> HAD <sub>50</sub> /ml    | 10 <sup>7.5</sup> HAD <sub>50</sub> /ml at 7 dpi                                | Vlasova and others 2015   |
|              |                                                   | Intranasal 50 HAD <sub>50</sub> /ml                   | 10 <sup>6.5</sup> to 10 <sup>7.5</sup> HAD <sub>50</sub> /ml from 7 dpi         |                           |
|              |                                                   | Contact                                               | 10 <sup>6.5</sup> to 10 <sup>7</sup> HAD <sub>50</sub> /ml from 15 dpi          |                           |
|              | Russia Boguchary 06/13 isolated from domestic pig | Intranasal 5×10 <sup>3</sup> HAD <sub>50</sub> /ml    | 10 <sup>6.5</sup> to 10 <sup>7.5</sup> HAD <sub>50</sub> /ml from 9 dpi         | Vlasova and others 2015   |
|              |                                                   | Intranasal 50 HAD <sub>50</sub> /ml                   | 10 <sup>6.5</sup> to 10 <sup>7</sup> HAD <sub>50</sub> /ml from 5 dpi           |                           |
|              |                                                   | Contact                                               | 10 <sup>7</sup> HAD <sub>50</sub> /ml at 13 dpi                                 |                           |
|              | Russia K 08/13 isolated from wild boar            | Intramuscular 5×10 <sup>3</sup> HAD <sub>50</sub> /ml | 10 <sup>6.5</sup> to 10 <sup>7</sup> HAD <sub>50</sub> /ml from 7 dpi           | Vlasova and others 2015   |
|              |                                                   | Intramuscular 50 HAD <sub>50</sub> /ml                | 10 <sup>6.5</sup> to 10 <sup>7</sup> HAD <sub>50</sub> /ml from 9 dpi           |                           |
| Nasal fluid  | Georgia 2007/1 isolated from domestic pig         | Intramuscular 10 <sup>2</sup> HAD <sub>50</sub> /ml   | Intermittent detection, $10^2$ to $10^4$ HAD <sub>50</sub> /ml from 6 dpi       | Guinat and others 2014    |
|              |                                                   | Contact                                               | Intermittent detection, 10 to 10 <sup>2</sup> HAD <sub>50</sub> /ml from 7 dpi  |                           |
| Rectal fluid | Georgia 2007/1 isolated from domestic pig         | Intramuscular 10 <sup>2</sup> HAD <sub>50</sub> /ml   | Intermittent detection, 10 to 10 <sup>2</sup> HAD <sub>50</sub> /ml from 5 dpi  | Guinat and others 2014    |
|              |                                                   | Contact                                               | Intermittent detection, 10 to 10 <sup>2</sup> HAD <sub>50</sub> /ml from 12 dpi |                           |

dpi Day post-infection, HAD<sub>50</sub>/ml 50 per cent haemadsorbing doses per ml

#### Guinatet al., 2016



Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region under the GF-TADs umbrella


### **Preservation of ASF virus**

| Material       | duration | method                          | Reference                                 |
|----------------|----------|---------------------------------|-------------------------------------------|
| Feces (4-6°C)  | 160 days | Bioassay (i.m.)                 | Kovalenko, 1972                           |
| Feces (4°C-RT) | 3 months | Virus isolation<br>(low titers) | S. Blome and Dietze,<br>2011 (FAO report) |
| Feces (4°C)    | 8 days   | Virus isolation                 | Davies et al., 2015                       |
| Feces (37°C)   | 3-4 days | Virus isolation                 | Davies et al., 2015                       |
| Urine (4°C)    | 15 days  | Virus isolation<br>(low titers) | Davieset al., 2015                        |
| Urine (21°C)   | 5 days   | Virus isolation<br>(low titers) | Davieset al., 2015                        |
| Urine (37°C)   | 2-3 days | Virus isolation<br>(low titers) | Davieset al., 2015                        |
| Urine (4-6°C)  | 60 days  | Bioassay (i.m.)                 | Kovalenko1972                             |



Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region under the GF-TADs umbrella

## **Apparently**





 Standing Group of Experts on African swine fever in the Baltic and Eastern

 Europe region under the GF-TADs umbrella

 SCE ASE11
 Warsaux Poland
 24.25 September 2019

# Indirect transmission through carcasses in the habitat

### What do we need to know?

- Tenacity: How long are carcasses infectious?
- Availability: How long is the process of natural decomposition of a wild boar until they "disappear"?
- What happens with the left-overs(bones)?
- Contact: Do wild boar eat their dead fellows/ what do they do when they find a dead fellow?



### Preservation of the virus in the organs of an animal

| Material | duration             | method                        | Reference                 |
|----------|----------------------|-------------------------------|---------------------------|
| Blood    | 140 days in the dark | Bioassay                      | Montgomery et al., 1921   |
| Blood    | >6 years at 4-6°C    | Bioassay (i.m.)               | Kovalenko et al., 1972    |
| Blood    | > 90 days            | Virus isolation (high titers) | S.Blome and Dietze, 2011  |
| Spleen   | 240 days(6-8°C)      | Bioassay (i.m.)               | Kovalenko et al., 1972    |
| Spleen   | >90 days             | Virus isolation (high titers) | S. Blome and Dietze,2011  |
| Muscle   | 155 days(6-8°C)      | Bioassay (i.m.)               | Kovalenko et al., 1972    |
| Muscle   | 183 days             |                               | McKercher,1987            |
| Muscle   | 90 days              | Virus isolation (low titer)   | S. Blome and Dietze, 2011 |
| Fat      | 123 days             | Virus isolation               | McKercher,1987            |



Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region under the GF-TADs umbrella



Example of natural decomposition of a wild carcass in summer in the forest (with access to scavenger animals) A, B= Day 1, flies lay eggs in little carcass holes C = Day 6, massive larvae invasion D = Day 9 process almost finalized. Only small islet of larvae activity; FLI, 2018 bones almost spread .



Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region under the GF-TADs umbrella

### ASF in Wild boar habitat



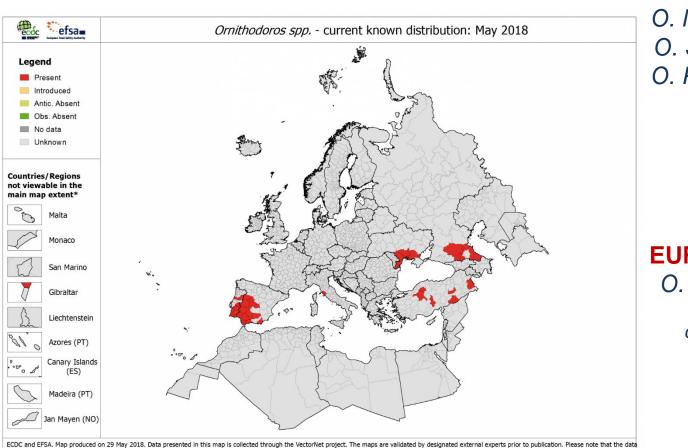
If wild boar eat infected carcasses – probability of infection must be very high!



### Wild boar were more interested in the soil underneath and in vicinity of the carcasses






Standing Group of Experts on African swine fever in the Baltic and Eastern **Europe region** under the GF-TADs umbrella

Indirect transmission through potential arthropod vectors (mechanical or virus reservoir?) What do we need to know?

- Invasive vectors: Ticks, biting flies, mosquitoes, lice
- Maggots:
- Do wild boar take them up from carcasses?
- Are they infectious (Forth et al., 2017)
- Other scavenging species:
- Fox, wolf, birds, others?



### **Ornithodorus competent vector**



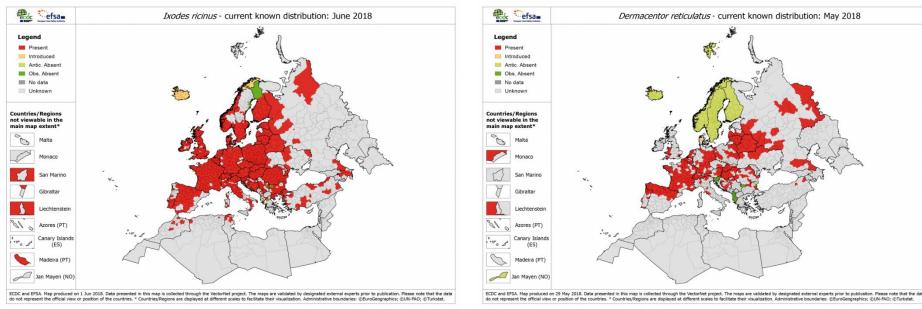
#### **AFRICA**

O. Moubata O. Savignyi O. Porcinus



EUROPE: O. Erraticus (Vector competency is lower)




ECDC and EFSA. Map produced on 29 May 2018. Data presented in this map is collected through the VectorNet project. The maps are validated by designated external experts prior to publication. Please note that the data do not represent the official view or position of the countries. Curves are displayed at different scales to facilitate their visualization. Administrative boundaries: CEuroGeographics; CUN-FAO; CTurkstat.

https://ecdc.europa.eu/en/publications-data/ornithodoros-spp-current-known-distribution-may-2018



Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region under the GF-TADs umbrella

### **Distribution of ticks in Europe**



https://ecdc.europa.eu/en/publications-data/ixodes-ricinuscurrent-known-distribution-june-2018 https://ecdc.europa.eu/en/publications-data/dermacentorreticulatus-current-known-distribution-may-2018



# Investigation in ticks and other blood sucking arthropods

- Investigation in ticks in Estonia and Russia no ASFV detection
- Investigation in Cullicoides no ASFV detection (Please contact L. Zani, J. Forth, A. Viltrop or S. Blome for more information)
- Role of Biting flies: *Stomoxys* found to be short distance mechanical vector, *(Melloret al., 1987; Oelsenet al., 2018. "Role of Tabanids?")*
- Role of lice (Mechanical vector? Anecdotally ASFV active up to 20 days (Botija and Badiola, 1966)
- Flies collected on ASF-affected farms in Lithuania tested negative for ASFV (EC 2014 b)





### Indirect transmission through the environment What do we need to know?

- Bones: How long are bones (bone marrow) infectious?

| Material    | duration         | method          | Reference                 |
|-------------|------------------|-----------------|---------------------------|
| Bone marrow | 94 days          | Virus isolation | McKercher,1987            |
| Bone marrow | 188 days (6-8°C) | Bioassay (i.m.) | Kovalenko et al.,<br>1972 |

- Soil: What is the role of soil?

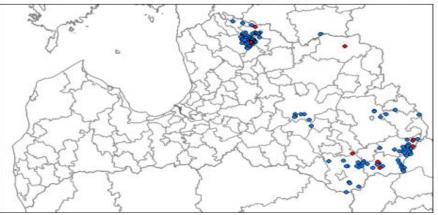
Experiments are running at the FLI (Dr. Carolina Probst carolina.probst@fli.de)



### **Preservation of the ASF virus**

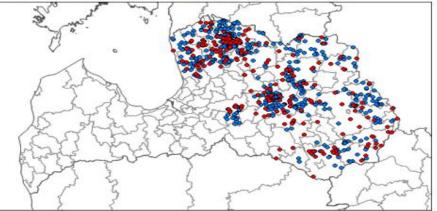
| Material                               | duration | method          | Reference  |
|----------------------------------------|----------|-----------------|------------|
| Blood on wooden plank under soil       | 81 days  | Bioassay (i.m.) |            |
| ASF-Blood on wooden plank on soil      | 192 days | Bioassay (i.m.) |            |
| ASF-Blood on clay brick under soil     | 112 days | Bioassay (i.m.) |            |
| ASF-Blood contaminated sand            | 81 days  | Bioassay (i.m.) | Kovalenko, |
| ASF-Blood contaminated soil            | 112 days | Bioassay (i.m.) | 1972       |
| ASF-Blood contaminated water<br>1:100  | 176 days | Bioassay (i.m.) |            |
| ASF-Blood contaminated water<br>1:1000 | <17 days | Bioassay (i.m.) |            |

FLI, 2018

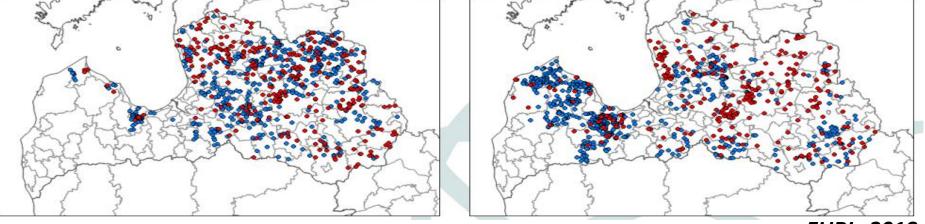

But: No virus isolation possible from soil beneath positive carcasses and viral genome Load very low (PCR) (Nurmoja andZani et al., 2018)



### ASF seroprevalence in Europe. For example....Latvia


RISK OF ENDEMIC ASF IN WILD BOAR POPULATION - VIROPOSITIVE (PCR OR PCR/IPT) SEROPOSITIVE (ONLY IPT)






2016 - in total 14178 743 (5.2%) 335 (2.4%)

2015 - in total 13337 850 (6.4%) 219 (1.6%)



2017 - in total 14168 887 (6.3%) 326 (2.3%)



EURL, 2018



**Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region** under the GF-TADs umbrella

### **Biosecurity on hunting**

# Hunting with dogs is an effective method of reducing population density





### **Biosecurity on hunting**

# Hunting with dogs is an effective method of reducing population density....but!!





### **Biosecurity during hunting/collection of samples**



 $\mathbf{\bullet}$ 

### **Biosecurity during hunting/ collection of samples**





### **Biosecurity during hunting/ collection of samples**

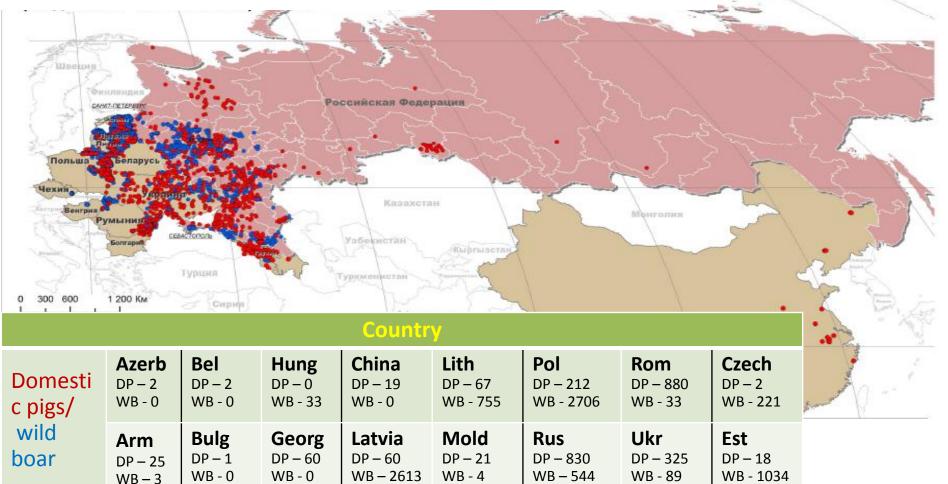


# Biosecurity during collection of samples from carcasses





### ASF in Wild boar population. First summary


- The prevalence of the virus in the infected wild boar population: 1-6.5%
- Seroprevalence in the shot WB: 0.5-2.5%
- Incubation period: 3-5 days
- Mortality: 90-95%
- 78% of WB, found dead, are the source of the virus
- **50 km / year** is average **speed**, but the virus also continues to exist in previously infected areas
- The virus spreads in accordance with the geographical extent of the wild boar population



### **Transmission to domestic pigs** Epidemic situation of ASF, OIE data 2007-2018



срочных сообщений ветслужб субъектов РФ каза MCX РФ №189)





Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region under the GF-TADs umbrella

### **Transmission to domestic pigs**

### What do we need to know?

- Direct contact (infected wild boar to susceptible domestic pig)
- Indirect contact
- Infected wild boar products (uncooked meat), feeding uncooked swill (hunting?)
- Contaminated fomites (?): surfaces of vehicles, equipment or animal worker clothing-> unknown impact
- Biosecurity (hunter/ farm)
- Contaminated bedding material, fresh grass, seeds (EC 2014a)
- Specific feed
- Blood sucking arthropods?
- Social attitudes and economic considerations (Vergne et al., 2016)
- lack of disease awareness
- moving pigs.... (including illegal)

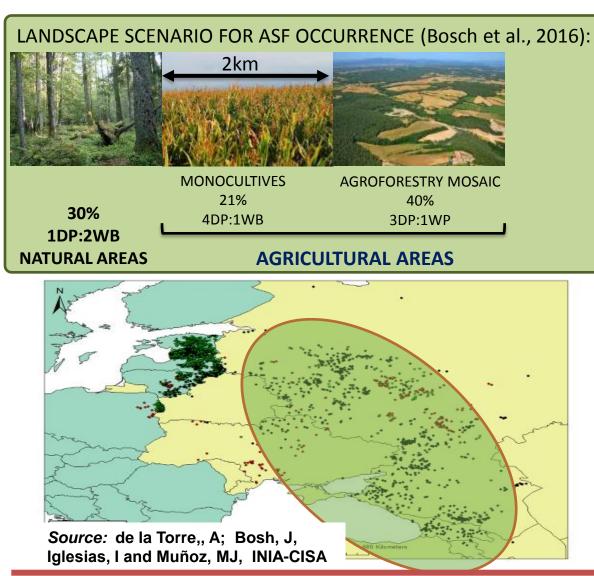


### **Direct contact**



Susceptible pigs housed in direct contact with infected wild boar became infected after 6-12 days (*Gabriel et al., 2011; Pietschmann et al., 2015*Even when susceptible pigs were separated from the infectious wild boars in an adjacent pen without direct, the transmission occurred after 21 days.




## **Preservation of the ASF virus in meat products**

| Material                     | duration                 | method                             | Reference              |
|------------------------------|--------------------------|------------------------------------|------------------------|
| Pork products                | 16 days (22 -27 °C)      | Virus isolation<br>(low titre)     | Kolbasov et al., 2011. |
|                              | 84 days (4-6°C)          | Virus isolation<br>(low titre )    | Kolbasov et al., 2011. |
|                              | 118 days (-18 to -20 °C) | Virus isolation<br>(low titre )    | Kolbasov et al., 2011. |
| Heated ham                   | <5 days                  | Virus isolation<br>negative (5 d)  | Mc Kercher 1978        |
| Salami/ pepero ni<br>sausage | <30 days                 | Virus isolation<br>negative (30 d) | Mc Kercher 1978        |
| Iberian Ham                  | 112 days                 | Virus isolation                    | Mebuset et al. 1993    |
| Serrano ham                  | 140 days                 | Virus isolation                    | Mebuset et al. 1997    |



Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region under the GF-TADs umbrella

### **EASTERN EUROPE SCENARIO (RF)**





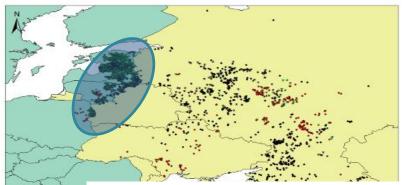
#### HOSTS:

- DOMESTIC PIG = major role in local and long ASF transmission (Vergne et al., 2015)
- WILD BOAR = secondary role but actively involved in ASF introduction and local spreading and able to transmit the disease in absence of domestic pigs (Iglesias et al., 2015)

#### **RISK FACTORS:**

- production systems (no fencing, swill feeding of infected pork...)
- ASF spills easily from systems to wild boar through carcasses into the environment.




Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region under the GF-TADs umbrella

### **EUROPEAN UNION SCENARIO**

### LANSCAPE SCENARIO FOR ASF OCCURRENCE (Bosch et al., 2016):



MONOCULTIVES AGROFORESTRY MOSAIC 9% 12% 73% 7WB:1DP 12WB:1DP 25WB:1DP NATURAL AREAS AGRICULTURAL AREAS



*Source:* de la Torre,, A; Bosh, J, and Muñoz, MJ, INIA-CISA

#### % NOTIFICATIONS



#### **HOSTS:**

WILD BOAR= plays a major role in multiple disease introduction and local transmission

#### **RISK FACTORS:**

- ASF Introductions by WB movements
- WB: WB transmission probably by several routes (direct contact, environmental contamination, contaminated feed).
- WB management: feeding habits, depopulation/hunting
- DP: Breaches in biosecurity in DP farms (indirect/direct contact with infected WB; swill feeding; illegal trade)

#### ASF OCCURRENCE (Bosch et al., 2016):

- NATURAL AREAS: 70% (20WB:1DP
- AGRICULTURAL AREAS: around 30% of notifications (10WB:1DP))



Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region under the GF-TADs umbrella

### Thank you for attention !

600901 Yur'evets Vladimir Russia Tel/Fax: (4922) 26-38-77, (4922) 26-06-14, (4922) 26-19-14 E-mail: mail@arriah.ru



#### References

• Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013;173:122–30. 10.1016/j.virusres.2012.10.026

• Chenais E, Ståhl K, Guberti V, Depner K. Wild boar habitat and epidemiologic cycle of African swine fever epizooticin Central and Eastern Europe. Emerg Infect Dis. 2018 Apr [date cited]. https://doi.org/10.3201/eid2404.172127

• Davies K, Goatley LC, Guinat C, Netherton CL, Gubbins S, Dixon LK, Reis AL. Survival of African Swine FeverVirus in Excretions from Pigs Experimentally Infected with the Georgia 2007/1 Isolate. Transbound EmergDis. 2017 Apr; 64(2):425-431.

• European Food Safety Authority (EFSA). Cortiñas Abrahantes J, Gogin A, Richardson J, Gervelmeyer A. Epidemiological analyses on African swine fever in the Baltic countries and Poland. EFSA J. 2017;15:4732.

• European Food Safety Authority. Evaluation of possible mitigation measures to prevent introduction and spread of African swine fever virus through wild boar. EFSA J. 2014;12:3616.

• Forth J, Ahmendt J, Blome S, Depner K, Kampen H. Evaluation of blowfly larvae (Diptera: Calliphoridae) as possible reservoirs and mechanical vectors of African swine fever virus. TBED 2017 (65-1) 210-213

• Guinat C, Gogin A, Blome S, Keil G, Pollin R, Pfeiffer DU, Dixon L. Transmission routes of African swine fever virus to domestic pigs: current knowledge and future research directions. Vet Rec. 2016 Mar 12;178(11):262-7. doi: 10.1136/vr.103593

•Mellor PS, Kitching RP, Wilkinson PJ. Mechanical transmission of capripox virus and African swine fever virus by Stomoxyscal citrans. Res Vet Sci. 1987 Jul;43(1):109-12.

• Nurmoja I, Schulz K, Staubach C, Sauter-Louis C, Depner K, Conraths FJ, et al. Development of African swine fever epidemic among wild boarin Estonia –two different areas in the epidemiological focus. Sci Rep. 2017;7:12562.

• Olesen AS, Lohse L, Hansen MF, Boklund A, Halasa T, Belsham GJ, Rasmussen TB, Bøtner A, Bødker R (2018) Infection of pigs with African swine fever virus via ingestion of stable flies (Stomoxyscal citrans). Transbound EmergDis. 2018 Jun 7. doi: 10.1111/tbed.12918. [Epubahead of print]

• Probst C, Globig A, Knoll B, Conraths FJ, Depner K. Behaviour of free ranging wild boar towards their dead fellows: potential implications for the transmission of African swine fever. R Soc Open Sci. 2017;4:170054. 10.1098/rsos.170054

• Vergne T., Guinat C., Petkova P., Gogin A., Kolbasov D., Blome S., et al (2014) Attitudes and beliefs of pig farmers and wild boar hunters towards reporting of African swine fever in Bulgaria, Germany and the western Part of the Russian Federation. Transboundary and Emerging Diseases doi: 10.1111/tbed.12254

• IGLESIAS I., MUÑOZ M. J., MONTES F., PEREZ A., GOGIN A., KOLBASOV D., DE LA TORRE A. (2015) Reproductive ratio for the local spread of African swine fever in wild boars in the Russian Federation. Transboundary and Emerging Diseases doi: 10.1111/tbed.12337

**Standing Group of Experts on African swine fever in the Baltic and Eastern Europe region** under the GF-TADs umbrella